1083 lines
38 KiB
C++
1083 lines
38 KiB
C++
/* Machine description for AArch64 architecture.
|
|
Copyright (C) 2009-2022 Free Software Foundation, Inc.
|
|
Contributed by ARM Ltd.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
#ifndef GCC_AARCH64_PROTOS_H
|
|
#define GCC_AARCH64_PROTOS_H
|
|
|
|
#include "input.h"
|
|
|
|
/* SYMBOL_SMALL_ABSOLUTE: Generate symbol accesses through
|
|
high and lo relocs that calculate the base address using a PC
|
|
relative reloc.
|
|
So to get the address of foo, we generate
|
|
adrp x0, foo
|
|
add x0, x0, :lo12:foo
|
|
|
|
To load or store something to foo, we could use the corresponding
|
|
load store variants that generate an
|
|
ldr x0, [x0,:lo12:foo]
|
|
or
|
|
str x1, [x0, :lo12:foo]
|
|
|
|
This corresponds to the small code model of the compiler.
|
|
|
|
SYMBOL_SMALL_GOT_4G: Similar to the one above but this
|
|
gives us the GOT entry of the symbol being referred to :
|
|
Thus calculating the GOT entry for foo is done using the
|
|
following sequence of instructions. The ADRP instruction
|
|
gets us to the page containing the GOT entry of the symbol
|
|
and the got_lo12 gets us the actual offset in it, together
|
|
the base and offset, we can address 4G size GOT table.
|
|
|
|
adrp x0, :got:foo
|
|
ldr x0, [x0, :gotoff_lo12:foo]
|
|
|
|
This corresponds to the small PIC model of the compiler.
|
|
|
|
SYMBOL_SMALL_GOT_28K: Similar to SYMBOL_SMALL_GOT_4G, but used for symbol
|
|
restricted within 28K GOT table size.
|
|
|
|
ldr reg, [gp, #:gotpage_lo15:sym]
|
|
|
|
This corresponds to -fpic model for small memory model of the compiler.
|
|
|
|
SYMBOL_SMALL_TLSGD
|
|
SYMBOL_SMALL_TLSDESC
|
|
SYMBOL_SMALL_TLSIE
|
|
SYMBOL_TINY_TLSIE
|
|
SYMBOL_TLSLE12
|
|
SYMBOL_TLSLE24
|
|
SYMBOL_TLSLE32
|
|
SYMBOL_TLSLE48
|
|
Each of these represents a thread-local symbol, and corresponds to the
|
|
thread local storage relocation operator for the symbol being referred to.
|
|
|
|
SYMBOL_TINY_ABSOLUTE
|
|
|
|
Generate symbol accesses as a PC relative address using a single
|
|
instruction. To compute the address of symbol foo, we generate:
|
|
|
|
ADR x0, foo
|
|
|
|
SYMBOL_TINY_GOT
|
|
|
|
Generate symbol accesses via the GOT using a single PC relative
|
|
instruction. To compute the address of symbol foo, we generate:
|
|
|
|
ldr t0, :got:foo
|
|
|
|
The value of foo can subsequently read using:
|
|
|
|
ldrb t0, [t0]
|
|
|
|
SYMBOL_FORCE_TO_MEM : Global variables are addressed using
|
|
constant pool. All variable addresses are spilled into constant
|
|
pools. The constant pools themselves are addressed using PC
|
|
relative accesses. This only works for the large code model.
|
|
*/
|
|
enum aarch64_symbol_type
|
|
{
|
|
SYMBOL_SMALL_ABSOLUTE,
|
|
SYMBOL_SMALL_GOT_28K,
|
|
SYMBOL_SMALL_GOT_4G,
|
|
SYMBOL_SMALL_TLSGD,
|
|
SYMBOL_SMALL_TLSDESC,
|
|
SYMBOL_SMALL_TLSIE,
|
|
SYMBOL_TINY_ABSOLUTE,
|
|
SYMBOL_TINY_GOT,
|
|
SYMBOL_TINY_TLSIE,
|
|
SYMBOL_TLSLE12,
|
|
SYMBOL_TLSLE24,
|
|
SYMBOL_TLSLE32,
|
|
SYMBOL_TLSLE48,
|
|
SYMBOL_FORCE_TO_MEM
|
|
};
|
|
|
|
/* Classifies the type of an address query.
|
|
|
|
ADDR_QUERY_M
|
|
Query what is valid for an "m" constraint and a memory_operand
|
|
(the rules are the same for both).
|
|
|
|
ADDR_QUERY_LDP_STP
|
|
Query what is valid for a load/store pair.
|
|
|
|
ADDR_QUERY_LDP_STP_N
|
|
Query what is valid for a load/store pair, but narrow the incoming mode
|
|
for address checking. This is used for the store_pair_lanes patterns.
|
|
|
|
ADDR_QUERY_ANY
|
|
Query what is valid for at least one memory constraint, which may
|
|
allow things that "m" doesn't. For example, the SVE LDR and STR
|
|
addressing modes allow a wider range of immediate offsets than "m"
|
|
does. */
|
|
enum aarch64_addr_query_type {
|
|
ADDR_QUERY_M,
|
|
ADDR_QUERY_LDP_STP,
|
|
ADDR_QUERY_LDP_STP_N,
|
|
ADDR_QUERY_ANY
|
|
};
|
|
|
|
/* Enumerates values that can be arbitrarily mixed into a calculation
|
|
in order to make the result of the calculation unique to its use case.
|
|
|
|
AARCH64_SALT_SSP_SET
|
|
AARCH64_SALT_SSP_TEST
|
|
Used when calculating the address of the stack protection canary value.
|
|
There is a separate value for setting and testing the canary, meaning
|
|
that these two operations produce unique addresses: they are different
|
|
from each other, and from all other address calculations.
|
|
|
|
The main purpose of this is to prevent the SET address being spilled
|
|
to the stack and reloaded for the TEST, since that would give an
|
|
attacker the opportunity to change the address of the expected
|
|
canary value. */
|
|
enum aarch64_salt_type {
|
|
AARCH64_SALT_SSP_SET,
|
|
AARCH64_SALT_SSP_TEST
|
|
};
|
|
|
|
/* A set of tuning parameters contains references to size and time
|
|
cost models and vectors for address cost calculations, register
|
|
move costs and memory move costs. */
|
|
|
|
/* Scaled addressing modes can vary cost depending on the mode of the
|
|
value to be loaded/stored. QImode values cannot use scaled
|
|
addressing modes. */
|
|
|
|
struct scale_addr_mode_cost
|
|
{
|
|
const int hi;
|
|
const int si;
|
|
const int di;
|
|
const int ti;
|
|
};
|
|
|
|
/* Additional cost for addresses. */
|
|
struct cpu_addrcost_table
|
|
{
|
|
const struct scale_addr_mode_cost addr_scale_costs;
|
|
const int pre_modify;
|
|
const int post_modify;
|
|
const int post_modify_ld3_st3;
|
|
const int post_modify_ld4_st4;
|
|
const int register_offset;
|
|
const int register_sextend;
|
|
const int register_zextend;
|
|
const int imm_offset;
|
|
};
|
|
|
|
/* Additional costs for register copies. Cost is for one register. */
|
|
struct cpu_regmove_cost
|
|
{
|
|
const int GP2GP;
|
|
const int GP2FP;
|
|
const int FP2GP;
|
|
const int FP2FP;
|
|
};
|
|
|
|
struct simd_vec_cost
|
|
{
|
|
/* Cost of any integer vector operation, excluding the ones handled
|
|
specially below. */
|
|
const int int_stmt_cost;
|
|
|
|
/* Cost of any fp vector operation, excluding the ones handled
|
|
specially below. */
|
|
const int fp_stmt_cost;
|
|
|
|
/* Per-vector cost of permuting vectors after an LD2, LD3 or LD4,
|
|
as well as the per-vector cost of permuting vectors before
|
|
an ST2, ST3 or ST4. */
|
|
const int ld2_st2_permute_cost;
|
|
const int ld3_st3_permute_cost;
|
|
const int ld4_st4_permute_cost;
|
|
|
|
/* Cost of a permute operation. */
|
|
const int permute_cost;
|
|
|
|
/* Cost of reductions for various vector types: iN is for N-bit
|
|
integer elements and fN is for N-bit floating-point elements.
|
|
We need to single out the element type because it affects the
|
|
depth of the reduction. */
|
|
const int reduc_i8_cost;
|
|
const int reduc_i16_cost;
|
|
const int reduc_i32_cost;
|
|
const int reduc_i64_cost;
|
|
const int reduc_f16_cost;
|
|
const int reduc_f32_cost;
|
|
const int reduc_f64_cost;
|
|
|
|
/* Additional cost of storing a single vector element, on top of the
|
|
normal cost of a scalar store. */
|
|
const int store_elt_extra_cost;
|
|
|
|
/* Cost of a vector-to-scalar operation. */
|
|
const int vec_to_scalar_cost;
|
|
|
|
/* Cost of a scalar-to-vector operation. */
|
|
const int scalar_to_vec_cost;
|
|
|
|
/* Cost of an aligned vector load. */
|
|
const int align_load_cost;
|
|
|
|
/* Cost of an unaligned vector load. */
|
|
const int unalign_load_cost;
|
|
|
|
/* Cost of an unaligned vector store. */
|
|
const int unalign_store_cost;
|
|
|
|
/* Cost of a vector store. */
|
|
const int store_cost;
|
|
};
|
|
|
|
typedef struct simd_vec_cost advsimd_vec_cost;
|
|
|
|
/* SVE-specific extensions to the information provided by simd_vec_cost. */
|
|
struct sve_vec_cost : simd_vec_cost
|
|
{
|
|
constexpr sve_vec_cost (const simd_vec_cost &base,
|
|
unsigned int clast_cost,
|
|
unsigned int fadda_f16_cost,
|
|
unsigned int fadda_f32_cost,
|
|
unsigned int fadda_f64_cost,
|
|
unsigned int gather_load_x32_cost,
|
|
unsigned int gather_load_x64_cost,
|
|
unsigned int scatter_store_elt_cost)
|
|
: simd_vec_cost (base),
|
|
clast_cost (clast_cost),
|
|
fadda_f16_cost (fadda_f16_cost),
|
|
fadda_f32_cost (fadda_f32_cost),
|
|
fadda_f64_cost (fadda_f64_cost),
|
|
gather_load_x32_cost (gather_load_x32_cost),
|
|
gather_load_x64_cost (gather_load_x64_cost),
|
|
scatter_store_elt_cost (scatter_store_elt_cost)
|
|
{}
|
|
|
|
/* The cost of a vector-to-scalar CLASTA or CLASTB instruction,
|
|
with the scalar being stored in FP registers. This cost is
|
|
assumed to be a cycle latency. */
|
|
const int clast_cost;
|
|
|
|
/* The costs of FADDA for the three data types that it supports.
|
|
These costs are assumed to be cycle latencies. */
|
|
const int fadda_f16_cost;
|
|
const int fadda_f32_cost;
|
|
const int fadda_f64_cost;
|
|
|
|
/* The cost of a gather load instruction. The x32 value is for loads
|
|
of 32-bit elements and the x64 value is for loads of 64-bit elements. */
|
|
const int gather_load_x32_cost;
|
|
const int gather_load_x64_cost;
|
|
|
|
/* The per-element cost of a scatter store. */
|
|
const int scatter_store_elt_cost;
|
|
};
|
|
|
|
/* Base information about how the CPU issues code, containing
|
|
information that is relevant to scalar, Advanced SIMD and SVE
|
|
operations.
|
|
|
|
The structure uses the general term "operation" to refer to
|
|
whichever subdivision of an instruction makes sense for the CPU.
|
|
These operations would typically be micro operations or macro
|
|
operations.
|
|
|
|
Note that this structure and the ones derived from it are only
|
|
as general as they need to be for the CPUs that currently use them.
|
|
They will probably need to be extended or refined as more CPUs are
|
|
added. */
|
|
struct aarch64_base_vec_issue_info
|
|
{
|
|
/* How many loads and stores can be issued per cycle. */
|
|
const unsigned int loads_stores_per_cycle;
|
|
|
|
/* How many stores can be issued per cycle. */
|
|
const unsigned int stores_per_cycle;
|
|
|
|
/* How many integer or FP/SIMD operations can be issued per cycle.
|
|
|
|
Currently we don't try to distinguish the two. For vector code,
|
|
we only really track FP/SIMD operations during vector costing;
|
|
we don't for example try to cost arithmetic operations like
|
|
address calculations, which are only decided later during ivopts.
|
|
|
|
For scalar code, we effectively assume that code operates entirely
|
|
on integers or entirely on floating-point values. Again, we don't
|
|
try to take address calculations into account.
|
|
|
|
This is not very precise, but it's only meant to be a heuristic.
|
|
We could certainly try to do better in future if there's an example
|
|
of something that would benefit. */
|
|
const unsigned int general_ops_per_cycle;
|
|
|
|
/* How many FP/SIMD operations to count for a floating-point or
|
|
vector load operation.
|
|
|
|
When constructing an Advanced SIMD vector from elements that have
|
|
been loaded from memory, these values apply to each individual load.
|
|
When using an SVE gather load, the values apply to each element of
|
|
the gather. */
|
|
const unsigned int fp_simd_load_general_ops;
|
|
|
|
/* How many FP/SIMD operations to count for a floating-point or
|
|
vector store operation.
|
|
|
|
When storing individual elements of an Advanced SIMD vector out to
|
|
memory, these values apply to each individual store. When using an
|
|
SVE scatter store, these values apply to each element of the scatter. */
|
|
const unsigned int fp_simd_store_general_ops;
|
|
};
|
|
|
|
using aarch64_scalar_vec_issue_info = aarch64_base_vec_issue_info;
|
|
|
|
/* Base information about the issue stage for vector operations.
|
|
This structure contains information that is relevant to both
|
|
Advanced SIMD and SVE. */
|
|
struct aarch64_simd_vec_issue_info : aarch64_base_vec_issue_info
|
|
{
|
|
constexpr aarch64_simd_vec_issue_info (aarch64_base_vec_issue_info base,
|
|
unsigned int ld2_st2_general_ops,
|
|
unsigned int ld3_st3_general_ops,
|
|
unsigned int ld4_st4_general_ops)
|
|
: aarch64_base_vec_issue_info (base),
|
|
ld2_st2_general_ops (ld2_st2_general_ops),
|
|
ld3_st3_general_ops (ld3_st3_general_ops),
|
|
ld4_st4_general_ops (ld4_st4_general_ops)
|
|
{}
|
|
|
|
/* How many FP/SIMD operations to count for each vector loaded or
|
|
stored by an LD[234] or ST[234] operation, in addition to the
|
|
base costs given in the parent class. For example, the full
|
|
number of operations for an LD3 would be:
|
|
|
|
load ops: 3
|
|
general ops: 3 * (fp_simd_load_general_ops + ld3_st3_general_ops). */
|
|
const unsigned int ld2_st2_general_ops;
|
|
const unsigned int ld3_st3_general_ops;
|
|
const unsigned int ld4_st4_general_ops;
|
|
};
|
|
|
|
using aarch64_advsimd_vec_issue_info = aarch64_simd_vec_issue_info;
|
|
|
|
/* Information about the issue stage for SVE. The main thing this adds
|
|
is a concept of "predicate operations". */
|
|
struct aarch64_sve_vec_issue_info : aarch64_simd_vec_issue_info
|
|
{
|
|
constexpr aarch64_sve_vec_issue_info
|
|
(aarch64_simd_vec_issue_info base,
|
|
unsigned int pred_ops_per_cycle,
|
|
unsigned int while_pred_ops,
|
|
unsigned int int_cmp_pred_ops,
|
|
unsigned int fp_cmp_pred_ops,
|
|
unsigned int gather_scatter_pair_general_ops,
|
|
unsigned int gather_scatter_pair_pred_ops)
|
|
: aarch64_simd_vec_issue_info (base),
|
|
pred_ops_per_cycle (pred_ops_per_cycle),
|
|
while_pred_ops (while_pred_ops),
|
|
int_cmp_pred_ops (int_cmp_pred_ops),
|
|
fp_cmp_pred_ops (fp_cmp_pred_ops),
|
|
gather_scatter_pair_general_ops (gather_scatter_pair_general_ops),
|
|
gather_scatter_pair_pred_ops (gather_scatter_pair_pred_ops)
|
|
{}
|
|
|
|
/* How many predicate operations can be issued per cycle. */
|
|
const unsigned int pred_ops_per_cycle;
|
|
|
|
/* How many predicate operations are generated by a WHILExx
|
|
instruction. */
|
|
const unsigned int while_pred_ops;
|
|
|
|
/* How many predicate operations are generated by an integer
|
|
comparison instruction. */
|
|
const unsigned int int_cmp_pred_ops;
|
|
|
|
/* How many predicate operations are generated by a floating-point
|
|
comparison instruction. */
|
|
const unsigned int fp_cmp_pred_ops;
|
|
|
|
/* How many general and predicate operations are generated by each pair
|
|
of elements in a gather load or scatter store. These values apply
|
|
on top of the per-element counts recorded in fp_simd_load_general_ops
|
|
and fp_simd_store_general_ops.
|
|
|
|
The reason for using pairs is that that is the largest possible
|
|
granule size for 128-bit SVE, which can load and store 2 64-bit
|
|
elements or 4 32-bit elements. */
|
|
const unsigned int gather_scatter_pair_general_ops;
|
|
const unsigned int gather_scatter_pair_pred_ops;
|
|
};
|
|
|
|
/* Information related to instruction issue for a particular CPU. */
|
|
struct aarch64_vec_issue_info
|
|
{
|
|
const aarch64_base_vec_issue_info *const scalar;
|
|
const aarch64_simd_vec_issue_info *const advsimd;
|
|
const aarch64_sve_vec_issue_info *const sve;
|
|
};
|
|
|
|
/* Cost for vector insn classes. */
|
|
struct cpu_vector_cost
|
|
{
|
|
/* Cost of any integer scalar operation, excluding load and store. */
|
|
const int scalar_int_stmt_cost;
|
|
|
|
/* Cost of any fp scalar operation, excluding load and store. */
|
|
const int scalar_fp_stmt_cost;
|
|
|
|
/* Cost of a scalar load. */
|
|
const int scalar_load_cost;
|
|
|
|
/* Cost of a scalar store. */
|
|
const int scalar_store_cost;
|
|
|
|
/* Cost of a taken branch. */
|
|
const int cond_taken_branch_cost;
|
|
|
|
/* Cost of a not-taken branch. */
|
|
const int cond_not_taken_branch_cost;
|
|
|
|
/* Cost of an Advanced SIMD operations. */
|
|
const advsimd_vec_cost *advsimd;
|
|
|
|
/* Cost of an SVE operations, or null if SVE is not implemented. */
|
|
const sve_vec_cost *sve;
|
|
|
|
/* Issue information, or null if none is provided. */
|
|
const aarch64_vec_issue_info *const issue_info;
|
|
};
|
|
|
|
/* Branch costs. */
|
|
struct cpu_branch_cost
|
|
{
|
|
const int predictable; /* Predictable branch or optimizing for size. */
|
|
const int unpredictable; /* Unpredictable branch or optimizing for speed. */
|
|
};
|
|
|
|
/* Control approximate alternatives to certain FP operators. */
|
|
#define AARCH64_APPROX_MODE(MODE) \
|
|
((MIN_MODE_FLOAT <= (MODE) && (MODE) <= MAX_MODE_FLOAT) \
|
|
? ((uint64_t) 1 << ((MODE) - MIN_MODE_FLOAT)) \
|
|
: (MIN_MODE_VECTOR_FLOAT <= (MODE) && (MODE) <= MAX_MODE_VECTOR_FLOAT) \
|
|
? ((uint64_t) 1 << ((MODE) - MIN_MODE_VECTOR_FLOAT \
|
|
+ MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \
|
|
: (0))
|
|
#define AARCH64_APPROX_NONE ((uint64_t) 0)
|
|
#define AARCH64_APPROX_ALL (~(uint64_t) 0)
|
|
|
|
/* Allowed modes for approximations. */
|
|
struct cpu_approx_modes
|
|
{
|
|
const uint64_t division; /* Division. */
|
|
const uint64_t sqrt; /* Square root. */
|
|
const uint64_t recip_sqrt; /* Reciprocal square root. */
|
|
};
|
|
|
|
/* Cache prefetch settings for prefetch-loop-arrays. */
|
|
struct cpu_prefetch_tune
|
|
{
|
|
const int num_slots;
|
|
const int l1_cache_size;
|
|
const int l1_cache_line_size;
|
|
const int l2_cache_size;
|
|
/* Whether software prefetch hints should be issued for non-constant
|
|
strides. */
|
|
const bool prefetch_dynamic_strides;
|
|
/* The minimum constant stride beyond which we should use prefetch
|
|
hints for. */
|
|
const int minimum_stride;
|
|
const int default_opt_level;
|
|
};
|
|
|
|
/* Model the costs for loads/stores for the register allocators so that it can
|
|
do more accurate spill heuristics. */
|
|
struct cpu_memmov_cost
|
|
{
|
|
int load_int;
|
|
int store_int;
|
|
int load_fp;
|
|
int store_fp;
|
|
int load_pred;
|
|
int store_pred;
|
|
};
|
|
|
|
struct tune_params
|
|
{
|
|
const struct cpu_cost_table *insn_extra_cost;
|
|
const struct cpu_addrcost_table *addr_cost;
|
|
const struct cpu_regmove_cost *regmove_cost;
|
|
const struct cpu_vector_cost *vec_costs;
|
|
const struct cpu_branch_cost *branch_costs;
|
|
const struct cpu_approx_modes *approx_modes;
|
|
/* A bitmask of the possible SVE register widths in bits,
|
|
or SVE_NOT_IMPLEMENTED if not applicable. Only used for tuning
|
|
decisions, does not disable VLA vectorization. */
|
|
unsigned int sve_width;
|
|
/* Structure used by reload to cost spills. */
|
|
struct cpu_memmov_cost memmov_cost;
|
|
int issue_rate;
|
|
unsigned int fusible_ops;
|
|
const char *function_align;
|
|
const char *jump_align;
|
|
const char *loop_align;
|
|
int int_reassoc_width;
|
|
int fp_reassoc_width;
|
|
int vec_reassoc_width;
|
|
int min_div_recip_mul_sf;
|
|
int min_div_recip_mul_df;
|
|
/* Value for aarch64_case_values_threshold; or 0 for the default. */
|
|
unsigned int max_case_values;
|
|
/* An enum specifying how to take into account CPU autoprefetch capabilities
|
|
during instruction scheduling:
|
|
- AUTOPREFETCHER_OFF: Do not take autoprefetch capabilities into account.
|
|
- AUTOPREFETCHER_WEAK: Attempt to sort sequences of loads/store in order of
|
|
offsets but allow the pipeline hazard recognizer to alter that order to
|
|
maximize multi-issue opportunities.
|
|
- AUTOPREFETCHER_STRONG: Attempt to sort sequences of loads/store in order of
|
|
offsets and prefer this even if it restricts multi-issue opportunities. */
|
|
|
|
enum aarch64_autoprefetch_model
|
|
{
|
|
AUTOPREFETCHER_OFF,
|
|
AUTOPREFETCHER_WEAK,
|
|
AUTOPREFETCHER_STRONG
|
|
} autoprefetcher_model;
|
|
|
|
unsigned int extra_tuning_flags;
|
|
|
|
/* Place prefetch struct pointer at the end to enable type checking
|
|
errors when tune_params misses elements (e.g., from erroneous merges). */
|
|
const struct cpu_prefetch_tune *prefetch;
|
|
};
|
|
|
|
/* Classifies an address.
|
|
|
|
ADDRESS_REG_IMM
|
|
A simple base register plus immediate offset.
|
|
|
|
ADDRESS_REG_WB
|
|
A base register indexed by immediate offset with writeback.
|
|
|
|
ADDRESS_REG_REG
|
|
A base register indexed by (optionally scaled) register.
|
|
|
|
ADDRESS_REG_UXTW
|
|
A base register indexed by (optionally scaled) zero-extended register.
|
|
|
|
ADDRESS_REG_SXTW
|
|
A base register indexed by (optionally scaled) sign-extended register.
|
|
|
|
ADDRESS_LO_SUM
|
|
A LO_SUM rtx with a base register and "LO12" symbol relocation.
|
|
|
|
ADDRESS_SYMBOLIC:
|
|
A constant symbolic address, in pc-relative literal pool. */
|
|
|
|
enum aarch64_address_type {
|
|
ADDRESS_REG_IMM,
|
|
ADDRESS_REG_WB,
|
|
ADDRESS_REG_REG,
|
|
ADDRESS_REG_UXTW,
|
|
ADDRESS_REG_SXTW,
|
|
ADDRESS_LO_SUM,
|
|
ADDRESS_SYMBOLIC
|
|
};
|
|
|
|
/* Address information. */
|
|
struct aarch64_address_info {
|
|
enum aarch64_address_type type;
|
|
rtx base;
|
|
rtx offset;
|
|
poly_int64 const_offset;
|
|
int shift;
|
|
enum aarch64_symbol_type symbol_type;
|
|
};
|
|
|
|
#define AARCH64_FUSION_PAIR(x, name) \
|
|
AARCH64_FUSE_##name##_index,
|
|
/* Supported fusion operations. */
|
|
enum aarch64_fusion_pairs_index
|
|
{
|
|
#include "aarch64-fusion-pairs.def"
|
|
AARCH64_FUSE_index_END
|
|
};
|
|
|
|
#define AARCH64_FUSION_PAIR(x, name) \
|
|
AARCH64_FUSE_##name = (1u << AARCH64_FUSE_##name##_index),
|
|
/* Supported fusion operations. */
|
|
enum aarch64_fusion_pairs
|
|
{
|
|
AARCH64_FUSE_NOTHING = 0,
|
|
#include "aarch64-fusion-pairs.def"
|
|
AARCH64_FUSE_ALL = (1u << AARCH64_FUSE_index_END) - 1
|
|
};
|
|
|
|
#define AARCH64_EXTRA_TUNING_OPTION(x, name) \
|
|
AARCH64_EXTRA_TUNE_##name##_index,
|
|
/* Supported tuning flags indexes. */
|
|
enum aarch64_extra_tuning_flags_index
|
|
{
|
|
#include "aarch64-tuning-flags.def"
|
|
AARCH64_EXTRA_TUNE_index_END
|
|
};
|
|
|
|
|
|
#define AARCH64_EXTRA_TUNING_OPTION(x, name) \
|
|
AARCH64_EXTRA_TUNE_##name = (1u << AARCH64_EXTRA_TUNE_##name##_index),
|
|
/* Supported tuning flags. */
|
|
enum aarch64_extra_tuning_flags
|
|
{
|
|
AARCH64_EXTRA_TUNE_NONE = 0,
|
|
#include "aarch64-tuning-flags.def"
|
|
AARCH64_EXTRA_TUNE_ALL = (1u << AARCH64_EXTRA_TUNE_index_END) - 1
|
|
};
|
|
|
|
/* Enum describing the various ways that the
|
|
aarch64_parse_{arch,tune,cpu,extension} functions can fail.
|
|
This way their callers can choose what kind of error to give. */
|
|
|
|
enum aarch64_parse_opt_result
|
|
{
|
|
AARCH64_PARSE_OK, /* Parsing was successful. */
|
|
AARCH64_PARSE_MISSING_ARG, /* Missing argument. */
|
|
AARCH64_PARSE_INVALID_FEATURE, /* Invalid feature modifier. */
|
|
AARCH64_PARSE_INVALID_ARG /* Invalid arch, tune, cpu arg. */
|
|
};
|
|
|
|
/* Enum to distinguish which type of check is to be done in
|
|
aarch64_simd_valid_immediate. This is used as a bitmask where
|
|
AARCH64_CHECK_MOV has both bits set. Thus AARCH64_CHECK_MOV will
|
|
perform all checks. Adding new types would require changes accordingly. */
|
|
enum simd_immediate_check {
|
|
AARCH64_CHECK_ORR = 1 << 0,
|
|
AARCH64_CHECK_BIC = 1 << 1,
|
|
AARCH64_CHECK_MOV = AARCH64_CHECK_ORR | AARCH64_CHECK_BIC
|
|
};
|
|
|
|
/* The key type that -msign-return-address should use. */
|
|
enum aarch64_key_type {
|
|
AARCH64_KEY_A,
|
|
AARCH64_KEY_B
|
|
};
|
|
|
|
extern enum aarch64_key_type aarch64_ra_sign_key;
|
|
|
|
extern struct tune_params aarch64_tune_params;
|
|
|
|
/* The available SVE predicate patterns, known in the ACLE as "svpattern". */
|
|
#define AARCH64_FOR_SVPATTERN(T) \
|
|
T (POW2, pow2, 0) \
|
|
T (VL1, vl1, 1) \
|
|
T (VL2, vl2, 2) \
|
|
T (VL3, vl3, 3) \
|
|
T (VL4, vl4, 4) \
|
|
T (VL5, vl5, 5) \
|
|
T (VL6, vl6, 6) \
|
|
T (VL7, vl7, 7) \
|
|
T (VL8, vl8, 8) \
|
|
T (VL16, vl16, 9) \
|
|
T (VL32, vl32, 10) \
|
|
T (VL64, vl64, 11) \
|
|
T (VL128, vl128, 12) \
|
|
T (VL256, vl256, 13) \
|
|
T (MUL4, mul4, 29) \
|
|
T (MUL3, mul3, 30) \
|
|
T (ALL, all, 31)
|
|
|
|
/* The available SVE prefetch operations, known in the ACLE as "svprfop". */
|
|
#define AARCH64_FOR_SVPRFOP(T) \
|
|
T (PLDL1KEEP, pldl1keep, 0) \
|
|
T (PLDL1STRM, pldl1strm, 1) \
|
|
T (PLDL2KEEP, pldl2keep, 2) \
|
|
T (PLDL2STRM, pldl2strm, 3) \
|
|
T (PLDL3KEEP, pldl3keep, 4) \
|
|
T (PLDL3STRM, pldl3strm, 5) \
|
|
T (PSTL1KEEP, pstl1keep, 8) \
|
|
T (PSTL1STRM, pstl1strm, 9) \
|
|
T (PSTL2KEEP, pstl2keep, 10) \
|
|
T (PSTL2STRM, pstl2strm, 11) \
|
|
T (PSTL3KEEP, pstl3keep, 12) \
|
|
T (PSTL3STRM, pstl3strm, 13)
|
|
|
|
#define AARCH64_SVENUM(UPPER, LOWER, VALUE) AARCH64_SV_##UPPER = VALUE,
|
|
enum aarch64_svpattern {
|
|
AARCH64_FOR_SVPATTERN (AARCH64_SVENUM)
|
|
AARCH64_NUM_SVPATTERNS
|
|
};
|
|
|
|
enum aarch64_svprfop {
|
|
AARCH64_FOR_SVPRFOP (AARCH64_SVENUM)
|
|
AARCH64_NUM_SVPRFOPS
|
|
};
|
|
#undef AARCH64_SVENUM
|
|
|
|
/* It's convenient to divide the built-in function codes into groups,
|
|
rather than having everything in a single enum. This type enumerates
|
|
those groups. */
|
|
enum aarch64_builtin_class
|
|
{
|
|
AARCH64_BUILTIN_GENERAL,
|
|
AARCH64_BUILTIN_SVE
|
|
};
|
|
|
|
/* Built-in function codes are structured so that the low
|
|
AARCH64_BUILTIN_SHIFT bits contain the aarch64_builtin_class
|
|
and the upper bits contain a group-specific subcode. */
|
|
const unsigned int AARCH64_BUILTIN_SHIFT = 1;
|
|
|
|
/* Mask that selects the aarch64_builtin_class part of a function code. */
|
|
const unsigned int AARCH64_BUILTIN_CLASS = (1 << AARCH64_BUILTIN_SHIFT) - 1;
|
|
|
|
/* RAII class for enabling enough features to define built-in types
|
|
and implement the arm_neon.h pragma. */
|
|
class aarch64_simd_switcher
|
|
{
|
|
public:
|
|
aarch64_simd_switcher (unsigned int extra_flags = 0);
|
|
~aarch64_simd_switcher ();
|
|
|
|
private:
|
|
unsigned long m_old_isa_flags;
|
|
bool m_old_general_regs_only;
|
|
};
|
|
|
|
void aarch64_post_cfi_startproc (void);
|
|
poly_int64 aarch64_initial_elimination_offset (unsigned, unsigned);
|
|
int aarch64_get_condition_code (rtx);
|
|
bool aarch64_address_valid_for_prefetch_p (rtx, bool);
|
|
bool aarch64_bitmask_imm (HOST_WIDE_INT val, machine_mode);
|
|
unsigned HOST_WIDE_INT aarch64_and_split_imm1 (HOST_WIDE_INT val_in);
|
|
unsigned HOST_WIDE_INT aarch64_and_split_imm2 (HOST_WIDE_INT val_in);
|
|
bool aarch64_and_bitmask_imm (unsigned HOST_WIDE_INT val_in, machine_mode mode);
|
|
int aarch64_branch_cost (bool, bool);
|
|
enum aarch64_symbol_type aarch64_classify_symbolic_expression (rtx);
|
|
bool aarch64_advsimd_struct_mode_p (machine_mode mode);
|
|
opt_machine_mode aarch64_vq_mode (scalar_mode);
|
|
opt_machine_mode aarch64_full_sve_mode (scalar_mode);
|
|
bool aarch64_can_const_movi_rtx_p (rtx x, machine_mode mode);
|
|
bool aarch64_const_vec_all_same_int_p (rtx, HOST_WIDE_INT);
|
|
bool aarch64_const_vec_all_same_in_range_p (rtx, HOST_WIDE_INT,
|
|
HOST_WIDE_INT);
|
|
bool aarch64_constant_address_p (rtx);
|
|
bool aarch64_emit_approx_div (rtx, rtx, rtx);
|
|
bool aarch64_emit_approx_sqrt (rtx, rtx, bool);
|
|
void aarch64_expand_call (rtx, rtx, rtx, bool);
|
|
bool aarch64_expand_cpymem (rtx *);
|
|
bool aarch64_expand_setmem (rtx *);
|
|
bool aarch64_float_const_zero_rtx_p (rtx);
|
|
bool aarch64_float_const_rtx_p (rtx);
|
|
bool aarch64_function_arg_regno_p (unsigned);
|
|
bool aarch64_fusion_enabled_p (enum aarch64_fusion_pairs);
|
|
bool aarch64_gen_cpymemqi (rtx *);
|
|
bool aarch64_is_extend_from_extract (scalar_int_mode, rtx, rtx);
|
|
bool aarch64_is_long_call_p (rtx);
|
|
bool aarch64_is_noplt_call_p (rtx);
|
|
bool aarch64_label_mentioned_p (rtx);
|
|
void aarch64_declare_function_name (FILE *, const char*, tree);
|
|
void aarch64_asm_output_alias (FILE *, const tree, const tree);
|
|
void aarch64_asm_output_external (FILE *, tree, const char*);
|
|
bool aarch64_legitimate_pic_operand_p (rtx);
|
|
bool aarch64_mask_and_shift_for_ubfiz_p (scalar_int_mode, rtx, rtx);
|
|
bool aarch64_masks_and_shift_for_bfi_p (scalar_int_mode, unsigned HOST_WIDE_INT,
|
|
unsigned HOST_WIDE_INT,
|
|
unsigned HOST_WIDE_INT);
|
|
bool aarch64_zero_extend_const_eq (machine_mode, rtx, machine_mode, rtx);
|
|
bool aarch64_move_imm (HOST_WIDE_INT, machine_mode);
|
|
machine_mode aarch64_sve_int_mode (machine_mode);
|
|
opt_machine_mode aarch64_sve_pred_mode (unsigned int);
|
|
machine_mode aarch64_sve_pred_mode (machine_mode);
|
|
opt_machine_mode aarch64_sve_data_mode (scalar_mode, poly_uint64);
|
|
bool aarch64_sve_mode_p (machine_mode);
|
|
HOST_WIDE_INT aarch64_fold_sve_cnt_pat (aarch64_svpattern, unsigned int);
|
|
bool aarch64_sve_cnt_immediate_p (rtx);
|
|
bool aarch64_sve_scalar_inc_dec_immediate_p (rtx);
|
|
bool aarch64_sve_addvl_addpl_immediate_p (rtx);
|
|
bool aarch64_sve_vector_inc_dec_immediate_p (rtx);
|
|
int aarch64_add_offset_temporaries (rtx);
|
|
void aarch64_split_add_offset (scalar_int_mode, rtx, rtx, rtx, rtx, rtx);
|
|
bool aarch64_mov_operand_p (rtx, machine_mode);
|
|
rtx aarch64_reverse_mask (machine_mode, unsigned int);
|
|
bool aarch64_offset_7bit_signed_scaled_p (machine_mode, poly_int64);
|
|
bool aarch64_offset_9bit_signed_unscaled_p (machine_mode, poly_int64);
|
|
char *aarch64_output_sve_prefetch (const char *, rtx, const char *);
|
|
char *aarch64_output_sve_cnt_immediate (const char *, const char *, rtx);
|
|
char *aarch64_output_sve_cnt_pat_immediate (const char *, const char *, rtx *);
|
|
char *aarch64_output_sve_scalar_inc_dec (rtx);
|
|
char *aarch64_output_sve_addvl_addpl (rtx);
|
|
char *aarch64_output_sve_vector_inc_dec (const char *, rtx);
|
|
char *aarch64_output_scalar_simd_mov_immediate (rtx, scalar_int_mode);
|
|
char *aarch64_output_simd_mov_immediate (rtx, unsigned,
|
|
enum simd_immediate_check w = AARCH64_CHECK_MOV);
|
|
char *aarch64_output_sve_mov_immediate (rtx);
|
|
char *aarch64_output_sve_ptrues (rtx);
|
|
bool aarch64_pad_reg_upward (machine_mode, const_tree, bool);
|
|
bool aarch64_regno_ok_for_base_p (int, bool);
|
|
bool aarch64_regno_ok_for_index_p (int, bool);
|
|
bool aarch64_reinterpret_float_as_int (rtx value, unsigned HOST_WIDE_INT *fail);
|
|
bool aarch64_simd_check_vect_par_cnst_half (rtx op, machine_mode mode,
|
|
bool high);
|
|
bool aarch64_simd_scalar_immediate_valid_for_move (rtx, scalar_int_mode);
|
|
bool aarch64_simd_shift_imm_p (rtx, machine_mode, bool);
|
|
bool aarch64_sve_ptrue_svpattern_p (rtx, struct simd_immediate_info *);
|
|
bool aarch64_simd_valid_immediate (rtx, struct simd_immediate_info *,
|
|
enum simd_immediate_check w = AARCH64_CHECK_MOV);
|
|
rtx aarch64_check_zero_based_sve_index_immediate (rtx);
|
|
bool aarch64_sve_index_immediate_p (rtx);
|
|
bool aarch64_sve_arith_immediate_p (machine_mode, rtx, bool);
|
|
bool aarch64_sve_sqadd_sqsub_immediate_p (machine_mode, rtx, bool);
|
|
bool aarch64_sve_bitmask_immediate_p (rtx);
|
|
bool aarch64_sve_dup_immediate_p (rtx);
|
|
bool aarch64_sve_cmp_immediate_p (rtx, bool);
|
|
bool aarch64_sve_float_arith_immediate_p (rtx, bool);
|
|
bool aarch64_sve_float_mul_immediate_p (rtx);
|
|
bool aarch64_split_dimode_const_store (rtx, rtx);
|
|
bool aarch64_symbolic_address_p (rtx);
|
|
bool aarch64_uimm12_shift (HOST_WIDE_INT);
|
|
int aarch64_movk_shift (const wide_int_ref &, const wide_int_ref &);
|
|
bool aarch64_use_return_insn_p (void);
|
|
const char *aarch64_output_casesi (rtx *);
|
|
|
|
unsigned int aarch64_tlsdesc_abi_id ();
|
|
enum aarch64_symbol_type aarch64_classify_symbol (rtx, HOST_WIDE_INT);
|
|
enum aarch64_symbol_type aarch64_classify_tls_symbol (rtx);
|
|
enum reg_class aarch64_regno_regclass (unsigned);
|
|
int aarch64_asm_preferred_eh_data_format (int, int);
|
|
int aarch64_fpconst_pow_of_2 (rtx);
|
|
int aarch64_fpconst_pow2_recip (rtx);
|
|
machine_mode aarch64_hard_regno_caller_save_mode (unsigned, unsigned,
|
|
machine_mode);
|
|
int aarch64_uxt_size (int, HOST_WIDE_INT);
|
|
int aarch64_vec_fpconst_pow_of_2 (rtx);
|
|
rtx aarch64_eh_return_handler_rtx (void);
|
|
rtx aarch64_mask_from_zextract_ops (rtx, rtx);
|
|
const char *aarch64_output_move_struct (rtx *operands);
|
|
rtx aarch64_return_addr_rtx (void);
|
|
rtx aarch64_return_addr (int, rtx);
|
|
rtx aarch64_simd_gen_const_vector_dup (machine_mode, HOST_WIDE_INT);
|
|
rtx aarch64_gen_shareable_zero (machine_mode);
|
|
bool aarch64_simd_mem_operand_p (rtx);
|
|
bool aarch64_sve_ld1r_operand_p (rtx);
|
|
bool aarch64_sve_ld1rq_operand_p (rtx);
|
|
bool aarch64_sve_ld1ro_operand_p (rtx, scalar_mode);
|
|
bool aarch64_sve_ldff1_operand_p (rtx);
|
|
bool aarch64_sve_ldnf1_operand_p (rtx);
|
|
bool aarch64_sve_ldr_operand_p (rtx);
|
|
bool aarch64_sve_prefetch_operand_p (rtx, machine_mode);
|
|
bool aarch64_sve_struct_memory_operand_p (rtx);
|
|
rtx aarch64_simd_vect_par_cnst_half (machine_mode, int, bool);
|
|
rtx aarch64_gen_stepped_int_parallel (unsigned int, int, int);
|
|
bool aarch64_stepped_int_parallel_p (rtx, int);
|
|
rtx aarch64_tls_get_addr (void);
|
|
unsigned aarch64_dbx_register_number (unsigned);
|
|
unsigned aarch64_trampoline_size (void);
|
|
void aarch64_asm_output_labelref (FILE *, const char *);
|
|
void aarch64_cpu_cpp_builtins (cpp_reader *);
|
|
const char * aarch64_gen_far_branch (rtx *, int, const char *, const char *);
|
|
const char * aarch64_output_probe_stack_range (rtx, rtx);
|
|
const char * aarch64_output_probe_sve_stack_clash (rtx, rtx, rtx, rtx);
|
|
void aarch64_err_no_fpadvsimd (machine_mode);
|
|
void aarch64_expand_epilogue (bool);
|
|
rtx aarch64_ptrue_all (unsigned int);
|
|
opt_machine_mode aarch64_ptrue_all_mode (rtx);
|
|
rtx aarch64_convert_sve_data_to_pred (rtx, machine_mode, rtx);
|
|
rtx aarch64_expand_sve_dupq (rtx, machine_mode, rtx);
|
|
void aarch64_expand_mov_immediate (rtx, rtx);
|
|
rtx aarch64_stack_protect_canary_mem (machine_mode, rtx, aarch64_salt_type);
|
|
rtx aarch64_ptrue_reg (machine_mode);
|
|
rtx aarch64_pfalse_reg (machine_mode);
|
|
bool aarch64_sve_same_pred_for_ptest_p (rtx *, rtx *);
|
|
void aarch64_emit_sve_pred_move (rtx, rtx, rtx);
|
|
void aarch64_expand_sve_mem_move (rtx, rtx, machine_mode);
|
|
bool aarch64_maybe_expand_sve_subreg_move (rtx, rtx);
|
|
rtx aarch64_replace_reg_mode (rtx, machine_mode);
|
|
void aarch64_split_sve_subreg_move (rtx, rtx, rtx);
|
|
void aarch64_expand_prologue (void);
|
|
void aarch64_expand_vector_init (rtx, rtx);
|
|
void aarch64_sve_expand_vector_init (rtx, rtx);
|
|
void aarch64_init_cumulative_args (CUMULATIVE_ARGS *, const_tree, rtx,
|
|
const_tree, unsigned, bool = false);
|
|
void aarch64_init_expanders (void);
|
|
void aarch64_init_simd_builtins (void);
|
|
void aarch64_emit_call_insn (rtx);
|
|
void aarch64_register_pragmas (void);
|
|
void aarch64_relayout_simd_types (void);
|
|
void aarch64_reset_previous_fndecl (void);
|
|
bool aarch64_return_address_signing_enabled (void);
|
|
bool aarch64_bti_enabled (void);
|
|
void aarch64_save_restore_target_globals (tree);
|
|
void aarch64_addti_scratch_regs (rtx, rtx, rtx *,
|
|
rtx *, rtx *,
|
|
rtx *, rtx *,
|
|
rtx *);
|
|
void aarch64_subvti_scratch_regs (rtx, rtx, rtx *,
|
|
rtx *, rtx *,
|
|
rtx *, rtx *, rtx *);
|
|
void aarch64_expand_subvti (rtx, rtx, rtx,
|
|
rtx, rtx, rtx, rtx, bool);
|
|
|
|
|
|
/* Initialize builtins for SIMD intrinsics. */
|
|
void init_aarch64_simd_builtins (void);
|
|
|
|
void aarch64_simd_emit_reg_reg_move (rtx *, machine_mode, unsigned int);
|
|
|
|
/* Expand builtins for SIMD intrinsics. */
|
|
rtx aarch64_simd_expand_builtin (int, tree, rtx);
|
|
|
|
void aarch64_simd_lane_bounds (rtx, HOST_WIDE_INT, HOST_WIDE_INT, const_tree);
|
|
rtx aarch64_endian_lane_rtx (machine_mode, unsigned int);
|
|
|
|
void aarch64_split_128bit_move (rtx, rtx);
|
|
|
|
bool aarch64_split_128bit_move_p (rtx, rtx);
|
|
|
|
bool aarch64_mov128_immediate (rtx);
|
|
|
|
void aarch64_split_simd_move (rtx, rtx);
|
|
|
|
/* Check for a legitimate floating point constant for FMOV. */
|
|
bool aarch64_float_const_representable_p (rtx);
|
|
|
|
extern int aarch64_epilogue_uses (int);
|
|
|
|
#if defined (RTX_CODE)
|
|
void aarch64_gen_unlikely_cbranch (enum rtx_code, machine_mode cc_mode,
|
|
rtx label_ref);
|
|
bool aarch64_legitimate_address_p (machine_mode, rtx, bool,
|
|
aarch64_addr_query_type = ADDR_QUERY_M);
|
|
machine_mode aarch64_select_cc_mode (RTX_CODE, rtx, rtx);
|
|
rtx aarch64_gen_compare_reg (RTX_CODE, rtx, rtx);
|
|
bool aarch64_maxmin_plus_const (rtx_code, rtx *, bool);
|
|
rtx aarch64_load_tp (rtx);
|
|
|
|
void aarch64_expand_compare_and_swap (rtx op[]);
|
|
void aarch64_split_compare_and_swap (rtx op[]);
|
|
|
|
void aarch64_split_atomic_op (enum rtx_code, rtx, rtx, rtx, rtx, rtx, rtx);
|
|
|
|
bool aarch64_gen_adjusted_ldpstp (rtx *, bool, machine_mode, RTX_CODE);
|
|
|
|
void aarch64_expand_sve_vec_cmp_int (rtx, rtx_code, rtx, rtx);
|
|
bool aarch64_expand_sve_vec_cmp_float (rtx, rtx_code, rtx, rtx, bool);
|
|
void aarch64_expand_sve_vcond (machine_mode, machine_mode, rtx *);
|
|
|
|
bool aarch64_prepare_sve_int_fma (rtx *, rtx_code);
|
|
bool aarch64_prepare_sve_cond_int_fma (rtx *, rtx_code);
|
|
#endif /* RTX_CODE */
|
|
|
|
bool aarch64_process_target_attr (tree);
|
|
void aarch64_override_options_internal (struct gcc_options *);
|
|
|
|
const char *aarch64_general_mangle_builtin_type (const_tree);
|
|
void aarch64_general_init_builtins (void);
|
|
tree aarch64_general_fold_builtin (unsigned int, tree, unsigned int, tree *);
|
|
gimple *aarch64_general_gimple_fold_builtin (unsigned int, gcall *,
|
|
gimple_stmt_iterator *);
|
|
rtx aarch64_general_expand_builtin (unsigned int, tree, rtx, int);
|
|
tree aarch64_general_builtin_decl (unsigned, bool);
|
|
tree aarch64_general_builtin_rsqrt (unsigned int);
|
|
tree aarch64_builtin_vectorized_function (unsigned int, tree, tree);
|
|
void handle_arm_acle_h (void);
|
|
void handle_arm_neon_h (void);
|
|
|
|
namespace aarch64_sve {
|
|
void init_builtins ();
|
|
void handle_arm_sve_h ();
|
|
tree builtin_decl (unsigned, bool);
|
|
bool builtin_type_p (const_tree);
|
|
bool builtin_type_p (const_tree, unsigned int *, unsigned int *);
|
|
const char *mangle_builtin_type (const_tree);
|
|
tree resolve_overloaded_builtin (location_t, unsigned int,
|
|
vec<tree, va_gc> *);
|
|
bool check_builtin_call (location_t, vec<location_t>, unsigned int,
|
|
tree, unsigned int, tree *);
|
|
gimple *gimple_fold_builtin (unsigned int, gimple_stmt_iterator *, gcall *);
|
|
rtx expand_builtin (unsigned int, tree, rtx);
|
|
tree handle_arm_sve_vector_bits_attribute (tree *, tree, tree, int, bool *);
|
|
#ifdef GCC_TARGET_H
|
|
bool verify_type_context (location_t, type_context_kind, const_tree, bool);
|
|
#endif
|
|
}
|
|
|
|
extern void aarch64_split_combinev16qi (rtx operands[3]);
|
|
extern void aarch64_expand_vec_perm (rtx, rtx, rtx, rtx, unsigned int);
|
|
extern void aarch64_expand_sve_vec_perm (rtx, rtx, rtx, rtx);
|
|
extern bool aarch64_madd_needs_nop (rtx_insn *);
|
|
extern void aarch64_final_prescan_insn (rtx_insn *);
|
|
void aarch64_atomic_assign_expand_fenv (tree *, tree *, tree *);
|
|
int aarch64_ccmp_mode_to_code (machine_mode mode);
|
|
|
|
bool extract_base_offset_in_addr (rtx mem, rtx *base, rtx *offset);
|
|
bool aarch64_mergeable_load_pair_p (machine_mode, rtx, rtx);
|
|
bool aarch64_operands_ok_for_ldpstp (rtx *, bool, machine_mode);
|
|
bool aarch64_operands_adjust_ok_for_ldpstp (rtx *, bool, machine_mode);
|
|
void aarch64_swap_ldrstr_operands (rtx *, bool);
|
|
|
|
extern void aarch64_asm_output_pool_epilogue (FILE *, const char *,
|
|
tree, HOST_WIDE_INT);
|
|
|
|
|
|
extern bool aarch64_classify_address (struct aarch64_address_info *, rtx,
|
|
machine_mode, bool,
|
|
aarch64_addr_query_type = ADDR_QUERY_M);
|
|
|
|
/* Defined in common/config/aarch64-common.cc. */
|
|
bool aarch64_handle_option (struct gcc_options *, struct gcc_options *,
|
|
const struct cl_decoded_option *, location_t);
|
|
const char *aarch64_rewrite_selected_cpu (const char *name);
|
|
enum aarch64_parse_opt_result aarch64_parse_extension (const char *,
|
|
uint64_t *,
|
|
std::string *);
|
|
void aarch64_get_all_extension_candidates (auto_vec<const char *> *candidates);
|
|
std::string aarch64_get_extension_string_for_isa_flags (uint64_t, uint64_t);
|
|
|
|
rtl_opt_pass *make_pass_fma_steering (gcc::context *);
|
|
rtl_opt_pass *make_pass_track_speculation (gcc::context *);
|
|
rtl_opt_pass *make_pass_tag_collision_avoidance (gcc::context *);
|
|
rtl_opt_pass *make_pass_insert_bti (gcc::context *ctxt);
|
|
rtl_opt_pass *make_pass_cc_fusion (gcc::context *ctxt);
|
|
|
|
poly_uint64 aarch64_regmode_natural_size (machine_mode);
|
|
|
|
bool aarch64_high_bits_all_ones_p (HOST_WIDE_INT);
|
|
|
|
struct atomic_ool_names
|
|
{
|
|
const char *str[5][5];
|
|
};
|
|
|
|
rtx aarch64_atomic_ool_func(machine_mode mode, rtx model_rtx,
|
|
const atomic_ool_names *names);
|
|
extern const atomic_ool_names aarch64_ool_swp_names;
|
|
extern const atomic_ool_names aarch64_ool_ldadd_names;
|
|
extern const atomic_ool_names aarch64_ool_ldset_names;
|
|
extern const atomic_ool_names aarch64_ool_ldclr_names;
|
|
extern const atomic_ool_names aarch64_ool_ldeor_names;
|
|
|
|
tree aarch64_resolve_overloaded_builtin_general (location_t, tree, void *);
|
|
|
|
const char *aarch64_sls_barrier (int);
|
|
const char *aarch64_indirect_call_asm (rtx);
|
|
extern bool aarch64_harden_sls_retbr_p (void);
|
|
extern bool aarch64_harden_sls_blr_p (void);
|
|
|
|
#endif /* GCC_AARCH64_PROTOS_H */
|