2025-04-28 08:47:28 +08:00

814 lines
28 KiB
C

/*****************************************************************************
* common.h: misc common functions
*****************************************************************************
* Copyright (C) 2003-2025 x264 project
*
* Authors: Laurent Aimar <fenrir@via.ecp.fr>
* Loren Merritt <lorenm@u.washington.edu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#ifndef X264_COMMON_H
#define X264_COMMON_H
#include "base.h"
/* Macros for templating function calls according to bit depth */
#define x264_template(w) x264_glue3(x264, BIT_DEPTH, w)
/****************************************************************************
* API Templates
****************************************************************************/
#define x264_nal_encode x264_template(nal_encode)
#define x264_encoder_reconfig x264_template(encoder_reconfig)
#define x264_encoder_parameters x264_template(encoder_parameters)
#define x264_encoder_headers x264_template(encoder_headers)
#define x264_encoder_encode x264_template(encoder_encode)
#define x264_encoder_close x264_template(encoder_close)
#define x264_encoder_delayed_frames x264_template(encoder_delayed_frames)
#define x264_encoder_maximum_delayed_frames x264_template(encoder_maximum_delayed_frames)
#define x264_encoder_intra_refresh x264_template(encoder_intra_refresh)
#define x264_encoder_invalidate_reference x264_template(encoder_invalidate_reference)
/* This undef allows to rename the external symbol and force link failure in case
* of incompatible libraries. Then the define enables templating as above. */
#undef x264_encoder_open
#define x264_encoder_open x264_template(encoder_open)
/****************************************************************************
* Macros
****************************************************************************/
#define X264_PCM_COST (FRAME_SIZE(256*BIT_DEPTH)+16)
#define QP_BD_OFFSET (6*(BIT_DEPTH-8))
#define QP_MAX_SPEC (51+QP_BD_OFFSET)
#define QP_MAX (QP_MAX_SPEC+18)
#define PIXEL_MAX ((1 << BIT_DEPTH)-1)
// arbitrary, but low because SATD scores are 1/4 normal
#define X264_LOOKAHEAD_QP (12+QP_BD_OFFSET)
#define SPEC_QP(x) X264_MIN((x), QP_MAX_SPEC)
#define NALU_OVERHEAD 5 // startcode + NAL type costs 5 bytes per frame
#define FILLER_OVERHEAD (NALU_OVERHEAD+1)
#define SEI_OVERHEAD (NALU_OVERHEAD - (h->param.b_annexb && !h->param.i_avcintra_class && (h->out.i_nal-1)))
#if HAVE_INTERLACED
# define MB_INTERLACED h->mb.b_interlaced
# define SLICE_MBAFF h->sh.b_mbaff
# define PARAM_INTERLACED h->param.b_interlaced
#else
# define MB_INTERLACED 0
# define SLICE_MBAFF 0
# define PARAM_INTERLACED 0
#endif
#ifdef CHROMA_FORMAT
# define CHROMA_H_SHIFT (CHROMA_FORMAT == CHROMA_420 || CHROMA_FORMAT == CHROMA_422)
# define CHROMA_V_SHIFT (CHROMA_FORMAT == CHROMA_420)
#else
# define CHROMA_FORMAT h->sps->i_chroma_format_idc
# define CHROMA_H_SHIFT h->mb.chroma_h_shift
# define CHROMA_V_SHIFT h->mb.chroma_v_shift
#endif
#define CHROMA_SIZE(s) (CHROMA_FORMAT ? (s)>>(CHROMA_H_SHIFT+CHROMA_V_SHIFT) : 0)
#define FRAME_SIZE(s) ((s)+2*CHROMA_SIZE(s))
#define CHROMA444 (CHROMA_FORMAT == CHROMA_444)
#if HIGH_BIT_DEPTH
typedef uint16_t pixel;
typedef uint64_t pixel4;
typedef int32_t dctcoef;
typedef uint32_t udctcoef;
# define PIXEL_SPLAT_X4(x) ((x)*0x0001000100010001ULL)
# define MPIXEL_X4(src) M64(src)
#else
typedef uint8_t pixel;
typedef uint32_t pixel4;
typedef int16_t dctcoef;
typedef uint16_t udctcoef;
# define PIXEL_SPLAT_X4(x) ((x)*0x01010101U)
# define MPIXEL_X4(src) M32(src)
#endif
#define SIZEOF_PIXEL ((int)sizeof(pixel))
#define CPPIXEL_X4(dst,src) MPIXEL_X4(dst) = MPIXEL_X4(src)
/****************************************************************************
* Includes
****************************************************************************/
#if HAVE_OPENCL
#include "opencl.h"
#endif
#include "cabac.h"
#include "bitstream.h"
#include "set.h"
#include "predict.h"
#include "pixel.h"
#include "mc.h"
#include "frame.h"
#include "dct.h"
#include "quant.h"
#include "threadpool.h"
/****************************************************************************
* General functions
****************************************************************************/
/* log */
#define x264_log x264_template(log)
void x264_log( x264_t *h, int i_level, const char *psz_fmt, ... );
#define x264_cavlc_init x264_template(cavlc_init)
void x264_cavlc_init( x264_t *h );
#define x264_cabac_init x264_template(cabac_init)
void x264_cabac_init( x264_t *h );
static ALWAYS_INLINE pixel x264_clip_pixel( int x )
{
return ( (x & ~PIXEL_MAX) ? (-x)>>31 & PIXEL_MAX : x );
}
/****************************************************************************
*
****************************************************************************/
typedef struct
{
x264_sps_t *sps;
x264_pps_t *pps;
int i_type;
int i_first_mb;
int i_last_mb;
int i_pps_id;
int i_frame_num;
int b_mbaff;
int b_field_pic;
int b_bottom_field;
int i_idr_pic_id; /* -1 if nal_type != 5 */
int i_poc;
int i_delta_poc_bottom;
int i_delta_poc[2];
int i_redundant_pic_cnt;
int b_direct_spatial_mv_pred;
int b_num_ref_idx_override;
int i_num_ref_idx_l0_active;
int i_num_ref_idx_l1_active;
int b_ref_pic_list_reordering[2];
struct
{
int idc;
int arg;
} ref_pic_list_order[2][X264_REF_MAX];
/* P-frame weighting */
int b_weighted_pred;
x264_weight_t weight[X264_REF_MAX*2][3];
int i_mmco_remove_from_end;
int i_mmco_command_count;
struct /* struct for future expansion */
{
int i_difference_of_pic_nums;
int i_poc;
} mmco[X264_REF_MAX];
int i_cabac_init_idc;
int i_qp;
int i_qp_delta;
int b_sp_for_swidth;
int i_qs_delta;
/* deblocking filter */
int i_disable_deblocking_filter_idc;
int i_alpha_c0_offset;
int i_beta_offset;
} x264_slice_header_t;
typedef struct x264_lookahead_t
{
volatile uint8_t b_exit_thread;
uint8_t b_thread_active;
uint8_t b_analyse_keyframe;
int i_last_keyframe;
int i_slicetype_length;
x264_frame_t *last_nonb;
x264_pthread_t thread_handle;
x264_sync_frame_list_t ifbuf;
x264_sync_frame_list_t next;
x264_sync_frame_list_t ofbuf;
} x264_lookahead_t;
typedef struct x264_ratecontrol_t x264_ratecontrol_t;
typedef struct x264_left_table_t
{
uint8_t intra[4];
uint8_t nnz[4];
uint8_t nnz_chroma[4];
uint8_t mv[4];
uint8_t ref[4];
} x264_left_table_t;
/* Current frame stats */
typedef struct
{
/* MV bits (MV+Ref+Block Type) */
int i_mv_bits;
/* Texture bits (DCT coefs) */
int i_tex_bits;
/* ? */
int i_misc_bits;
/* MB type counts */
int i_mb_count[19];
int i_mb_count_i;
int i_mb_count_p;
int i_mb_count_skip;
int i_mb_count_8x8dct[2];
int i_mb_count_ref[2][X264_REF_MAX*2];
int i_mb_partition[17];
int i_mb_cbp[6];
int i_mb_pred_mode[4][13];
int i_mb_field[3];
/* Adaptive direct mv pred */
int i_direct_score[2];
/* Metrics */
int64_t i_ssd[3];
double f_ssim;
int i_ssim_cnt;
} x264_frame_stat_t;
struct x264_t
{
/* encoder parameters */
x264_param_t param;
/* opaque pointer to bit depth independent interface */
void *api;
x264_t *thread[X264_THREAD_MAX+1];
x264_t *lookahead_thread[X264_LOOKAHEAD_THREAD_MAX];
int b_thread_active;
int i_thread_phase; /* which thread to use for the next frame */
int i_thread_idx; /* which thread this is */
int i_threadslice_start; /* first row in this thread slice */
int i_threadslice_end; /* row after the end of this thread slice */
int i_threadslice_pass; /* which pass of encoding we are on */
x264_threadpool_t *threadpool;
x264_threadpool_t *lookaheadpool;
x264_pthread_mutex_t mutex;
x264_pthread_cond_t cv;
/* bitstream output */
struct
{
int i_nal;
int i_nals_allocated;
x264_nal_t *nal;
int i_bitstream; /* size of p_bitstream */
uint8_t *p_bitstream; /* will hold data for all nal */
bs_t bs;
} out;
uint8_t *nal_buffer;
int nal_buffer_size;
x264_t *reconfig_h;
int reconfig;
/**** thread synchronization starts here ****/
/* frame number/poc */
int i_frame;
int i_frame_num;
int i_thread_frames; /* Number of different frames being encoded by threads;
* 1 when sliced-threads is on. */
int i_nal_type;
int i_nal_ref_idc;
int64_t i_disp_fields; /* Number of displayed fields (both coded and implied via pic_struct) */
int i_disp_fields_last_frame;
int64_t i_prev_duration; /* Duration of previous frame */
int64_t i_coded_fields; /* Number of coded fields (both coded and implied via pic_struct) */
int64_t i_cpb_delay; /* Equal to number of fields preceding this field
* since last buffering_period SEI */
int64_t i_coded_fields_lookahead; /* Use separate counters for lookahead */
int64_t i_cpb_delay_lookahead;
int64_t i_cpb_delay_pir_offset;
int64_t i_cpb_delay_pir_offset_next;
int b_queued_intra_refresh;
int64_t i_last_idr_pts;
int i_idr_pic_id;
/* quantization matrix for decoding, [cqm][qp%6][coef] */
int (*dequant4_mf[4])[16]; /* [4][6][16] */
int (*dequant8_mf[4])[64]; /* [4][6][64] */
/* quantization matrix for trellis, [cqm][qp][coef] */
int (*unquant4_mf[4])[16]; /* [4][QP_MAX_SPEC+1][16] */
int (*unquant8_mf[4])[64]; /* [4][QP_MAX_SPEC+1][64] */
/* quantization matrix for deadzone */
udctcoef (*quant4_mf[4])[16]; /* [4][QP_MAX_SPEC+1][16] */
udctcoef (*quant8_mf[4])[64]; /* [4][QP_MAX_SPEC+1][64] */
udctcoef (*quant4_bias[4])[16]; /* [4][QP_MAX_SPEC+1][16] */
udctcoef (*quant8_bias[4])[64]; /* [4][QP_MAX_SPEC+1][64] */
udctcoef (*quant4_bias0[4])[16]; /* [4][QP_MAX_SPEC+1][16] */
udctcoef (*quant8_bias0[4])[64]; /* [4][QP_MAX_SPEC+1][64] */
udctcoef (*nr_offset_emergency)[4][64];
/* mv/ref/mode cost arrays. */
uint16_t *cost_mv[QP_MAX+1];
uint16_t *cost_mv_fpel[QP_MAX+1][4];
struct
{
uint16_t ref[QP_MAX+1][3][33];
uint16_t i4x4_mode[QP_MAX+1][17];
} *cost_table;
const uint8_t *chroma_qp_table; /* includes both the nonlinear luma->chroma mapping and chroma_qp_offset */
/* Slice header */
x264_slice_header_t sh;
/* SPS / PPS */
x264_sps_t sps[1];
x264_pps_t pps[1];
/* Slice header backup, for SEI_DEC_REF_PIC_MARKING */
int b_sh_backup;
x264_slice_header_t sh_backup;
/* cabac context */
x264_cabac_t cabac;
struct
{
/* Frames to be encoded (whose types have been decided) */
x264_frame_t **current;
/* Unused frames: 0 = fenc, 1 = fdec */
x264_frame_t **unused[2];
/* Unused blank frames (for duplicates) */
x264_frame_t **blank_unused;
/* frames used for reference + sentinels */
x264_frame_t *reference[X264_REF_MAX+2];
int i_last_keyframe; /* Frame number of the last keyframe */
int i_last_idr; /* Frame number of the last IDR (not RP)*/
int i_poc_last_open_gop; /* Poc of the I frame of the last open-gop. The value
* is only assigned during the period between that
* I frame and the next P or I frame, else -1 */
int i_input; /* Number of input frames already accepted */
int i_max_dpb; /* Number of frames allocated in the decoded picture buffer */
int i_max_ref0;
int i_max_ref1;
int i_delay; /* Number of frames buffered for B reordering */
int i_bframe_delay;
int64_t i_bframe_delay_time;
int64_t i_first_pts;
int64_t i_prev_reordered_pts[2];
int64_t i_largest_pts;
int64_t i_second_largest_pts;
int b_have_lowres; /* Whether 1/2 resolution luma planes are being used */
int b_have_sub8x8_esa;
} frames;
/* current frame being encoded */
x264_frame_t *fenc;
/* frame being reconstructed */
x264_frame_t *fdec;
/* references lists */
int i_ref[2];
x264_frame_t *fref[2][X264_REF_MAX+3];
x264_frame_t *fref_nearest[2];
int b_ref_reorder[2];
/* hrd */
int initial_cpb_removal_delay;
int initial_cpb_removal_delay_offset;
int64_t i_reordered_pts_delay;
/* Current MB DCT coeffs */
struct
{
ALIGNED_64( dctcoef luma16x16_dc[3][16] );
ALIGNED_16( dctcoef chroma_dc[2][8] );
// FIXME share memory?
ALIGNED_64( dctcoef luma8x8[12][64] );
ALIGNED_64( dctcoef luma4x4[16*3][16] );
} dct;
/* MB table and cache for current frame/mb */
struct
{
int i_mb_width;
int i_mb_height;
int i_mb_count; /* number of mbs in a frame */
/* Chroma subsampling */
int chroma_h_shift;
int chroma_v_shift;
/* Strides */
int i_mb_stride;
int i_b8_stride;
int i_b4_stride;
int left_b8[2];
int left_b4[2];
/* Current index */
int i_mb_x;
int i_mb_y;
int i_mb_xy;
int i_b8_xy;
int i_b4_xy;
/* Search parameters */
int i_me_method;
int i_subpel_refine;
int b_chroma_me;
int b_trellis;
int b_noise_reduction;
int b_dct_decimate;
int i_psy_rd; /* Psy RD strength--fixed point value*/
int i_psy_trellis; /* Psy trellis strength--fixed point value*/
int b_interlaced;
int b_adaptive_mbaff; /* MBAFF+subme 0 requires non-adaptive MBAFF i.e. all field mbs */
/* Allowed qpel MV range to stay within the picture + emulated edge pixels */
int mv_min[2];
int mv_max[2];
int mv_miny_row[3]; /* 0 == top progressive, 1 == bot progressive, 2 == interlaced */
int mv_maxy_row[3];
/* Subpel MV range for motion search.
* same mv_min/max but includes levels' i_mv_range. */
int mv_min_spel[2];
int mv_max_spel[2];
int mv_miny_spel_row[3];
int mv_maxy_spel_row[3];
/* Fullpel MV range for motion search */
ALIGNED_8( int16_t mv_limit_fpel[2][2] ); /* min_x, min_y, max_x, max_y */
int mv_miny_fpel_row[3];
int mv_maxy_fpel_row[3];
/* neighboring MBs */
unsigned int i_neighbour;
unsigned int i_neighbour8[4]; /* neighbours of each 8x8 or 4x4 block that are available */
unsigned int i_neighbour4[16]; /* at the time the block is coded */
unsigned int i_neighbour_intra; /* for constrained intra pred */
unsigned int i_neighbour_frame; /* ignoring slice boundaries */
int i_mb_type_top;
int i_mb_type_left[2];
int i_mb_type_topleft;
int i_mb_type_topright;
int i_mb_prev_xy;
int i_mb_left_xy[2];
int i_mb_top_xy;
int i_mb_topleft_xy;
int i_mb_topright_xy;
int i_mb_top_y;
int i_mb_topleft_y;
int i_mb_topright_y;
const x264_left_table_t *left_index_table;
int i_mb_top_mbpair_xy;
int topleft_partition;
int b_allow_skip;
int field_decoding_flag;
/**** thread synchronization ends here ****/
/* subsequent variables are either thread-local or constant,
* and won't be copied from one thread to another */
/* mb table */
uint8_t *base; /* base pointer for all malloced data in this mb */
int8_t *type; /* mb type */
uint8_t *partition; /* mb partition */
int8_t *qp; /* mb qp */
int16_t *cbp; /* mb cbp: 0x0?: luma, 0x?0: chroma, 0x100: luma dc, 0x200 and 0x400: chroma dc, 0x1000 PCM (all set for PCM) */
int8_t (*intra4x4_pred_mode)[8]; /* intra4x4 pred mode. for non I4x4 set to I_PRED_4x4_DC(2) */
/* actually has only 7 entries; set to 8 for write-combining optimizations */
uint8_t (*non_zero_count)[16*3]; /* nzc. for I_PCM set to 16 */
int8_t *chroma_pred_mode; /* chroma_pred_mode. cabac only. for non intra I_PRED_CHROMA_DC(0) */
int16_t (*mv[2])[2]; /* mb mv. set to 0 for intra mb */
uint8_t (*mvd[2])[8][2]; /* absolute value of mb mv difference with predict, clipped to [0,33]. set to 0 if intra. cabac only */
int8_t *ref[2]; /* mb ref. set to -1 if non used (intra or Lx only) */
int16_t (*mvr[2][X264_REF_MAX*2])[2];/* 16x16 mv for each possible ref */
int8_t *skipbp; /* block pattern for SKIP or DIRECT (sub)mbs. B-frames + cabac only */
int8_t *mb_transform_size; /* transform_size_8x8_flag of each mb */
int32_t *slice_table; /* sh->first_mb of the slice that the indexed mb is part of */
uint8_t *field;
/* buffer for weighted versions of the reference frames */
pixel *p_weight_buf[X264_REF_MAX];
/* current value */
int i_type;
int i_partition;
ALIGNED_4( uint8_t i_sub_partition[4] );
int b_transform_8x8;
int i_cbp_luma;
int i_cbp_chroma;
int i_intra16x16_pred_mode;
int i_chroma_pred_mode;
/* skip flags for i4x4 and i8x8
* 0 = encode as normal.
* 1 (non-RD only) = the DCT is still in h->dct, restore fdec and skip reconstruction.
* 2 (RD only) = the DCT has since been overwritten by RD; restore that too. */
int i_skip_intra;
/* skip flag for motion compensation */
/* if we've already done MC, we don't need to do it again */
int b_skip_mc;
/* set to true if we are re-encoding a macroblock. */
int b_reencode_mb;
int ip_offset; /* Used by PIR to offset the quantizer of intra-refresh blocks. */
int b_deblock_rdo;
int b_overflow; /* If CAVLC had a level code overflow during bitstream writing. */
struct
{
/* space for p_fenc and p_fdec */
#define FENC_STRIDE 16
#define FDEC_STRIDE 32
ALIGNED_64( pixel fenc_buf[48*FENC_STRIDE] );
ALIGNED_64( pixel fdec_buf[54*FDEC_STRIDE] );
/* i4x4 and i8x8 backup data, for skipping the encode stage when possible */
ALIGNED_32( pixel i4x4_fdec_buf[16*16] );
ALIGNED_32( pixel i8x8_fdec_buf[16*16] );
ALIGNED_64( dctcoef i8x8_dct_buf[3][64] );
ALIGNED_64( dctcoef i4x4_dct_buf[15][16] );
uint32_t i4x4_nnz_buf[4];
uint32_t i8x8_nnz_buf[4];
/* Psy trellis DCT data */
ALIGNED_64( dctcoef fenc_dct8[4][64] );
ALIGNED_64( dctcoef fenc_dct4[16][16] );
/* Psy RD SATD/SA8D scores cache */
ALIGNED_64( uint32_t fenc_satd_cache[32] );
ALIGNED_16( uint64_t fenc_hadamard_cache[9] );
int i4x4_cbp;
int i8x8_cbp;
/* pointer over mb of the frame to be compressed */
pixel *p_fenc[3]; /* y,u,v */
/* pointer to the actual source frame, not a block copy */
pixel *p_fenc_plane[3];
/* pointer over mb of the frame to be reconstructed */
pixel *p_fdec[3];
/* pointer over mb of the references */
int i_fref[2];
/* [12]: yN, yH, yV, yHV, (NV12 ? uv : I444 ? (uN, uH, uV, uHV, vN, ...)) */
pixel *p_fref[2][X264_REF_MAX*2][12];
pixel *p_fref_w[X264_REF_MAX*2]; /* weighted fullpel luma */
uint16_t *p_integral[2][X264_REF_MAX];
/* fref stride */
int i_stride[3];
} pic;
/* cache */
struct
{
/* real intra4x4_pred_mode if I_4X4 or I_8X8, I_PRED_4x4_DC if mb available, -1 if not */
ALIGNED_16( int8_t intra4x4_pred_mode[X264_SCAN8_LUMA_SIZE] );
/* i_non_zero_count if available else 0x80. intentionally misaligned by 8 for asm */
ALIGNED_8( uint8_t non_zero_count[X264_SCAN8_SIZE] );
/* -1 if unused, -2 if unavailable */
ALIGNED_4( int8_t ref[2][X264_SCAN8_LUMA_SIZE] );
/* 0 if not available */
ALIGNED_16( int16_t mv[2][X264_SCAN8_LUMA_SIZE][2] );
ALIGNED_8( uint8_t mvd[2][X264_SCAN8_LUMA_SIZE][2] );
/* 1 if SKIP or DIRECT. set only for B-frames + CABAC */
ALIGNED_4( int8_t skip[X264_SCAN8_LUMA_SIZE] );
ALIGNED_4( int16_t direct_mv[2][4][2] );
ALIGNED_4( int8_t direct_ref[2][4] );
int direct_partition;
ALIGNED_4( int16_t pskip_mv[2] );
/* number of neighbors (top and left) that used 8x8 dct */
int i_neighbour_transform_size;
int i_neighbour_skip;
/* neighbor CBPs */
int i_cbp_top;
int i_cbp_left;
/* extra data required for mbaff in mv prediction */
int16_t topright_mv[2][3][2];
int8_t topright_ref[2][3];
/* current mb deblock strength */
uint8_t (*deblock_strength)[8][4];
} cache;
/* */
int i_qp; /* current qp */
int i_chroma_qp;
int i_last_qp; /* last qp */
int i_last_dqp; /* last delta qp */
int b_variable_qp; /* whether qp is allowed to vary per macroblock */
int b_lossless;
int b_direct_auto_read; /* take stats for --direct auto from the 2pass log */
int b_direct_auto_write; /* analyse direct modes, to use and/or save */
/* lambda values */
int i_trellis_lambda2[2][2]; /* [luma,chroma][inter,intra] */
int i_psy_rd_lambda;
int i_chroma_lambda2_offset;
/* B_direct and weighted prediction */
int16_t dist_scale_factor_buf[2][2][X264_REF_MAX*2][4];
int16_t (*dist_scale_factor)[4];
int8_t bipred_weight_buf[2][2][X264_REF_MAX*2][4];
int8_t (*bipred_weight)[4];
/* maps fref1[0]'s ref indices into the current list0 */
#define map_col_to_list0(col) h->mb.map_col_to_list0[(col)+2]
int8_t map_col_to_list0[X264_REF_MAX+2];
int ref_blind_dupe; /* The index of the blind reference frame duplicate. */
int8_t deblock_ref_table[X264_REF_MAX*2+2];
#define deblock_ref_table(x) h->mb.deblock_ref_table[(x)+2]
} mb;
/* rate control encoding only */
x264_ratecontrol_t *rc;
/* stats */
struct
{
/* Cumulated stats */
/* per slice info */
int i_frame_count[3];
int64_t i_frame_size[3];
double f_frame_qp[3];
int i_consecutive_bframes[X264_BFRAME_MAX+1];
/* */
double f_ssd_global[3];
double f_psnr_average[3];
double f_psnr_mean_y[3];
double f_psnr_mean_u[3];
double f_psnr_mean_v[3];
double f_ssim_mean_y[3];
double f_frame_duration[3];
/* */
int64_t i_mb_count[3][19];
int64_t i_mb_partition[2][17];
int64_t i_mb_count_8x8dct[2];
int64_t i_mb_count_ref[2][2][X264_REF_MAX*2];
int64_t i_mb_cbp[6];
int64_t i_mb_pred_mode[4][13];
int64_t i_mb_field[3];
/* */
int i_direct_score[2];
int i_direct_frames[2];
/* num p-frames weighted */
int i_wpred[2];
/* Current frame stats */
x264_frame_stat_t frame;
} stat;
/* 0 = luma 4x4, 1 = luma 8x8, 2 = chroma 4x4, 3 = chroma 8x8 */
udctcoef (*nr_offset)[64];
uint32_t (*nr_residual_sum)[64];
uint32_t *nr_count;
ALIGNED_32( udctcoef nr_offset_denoise[4][64] );
ALIGNED_32( uint32_t nr_residual_sum_buf[2][4][64] );
uint32_t nr_count_buf[2][4];
uint8_t luma2chroma_pixel[7]; /* Subsampled pixel size */
/* Buffers that are allocated per-thread even in sliced threads. */
void *scratch_buffer; /* for any temporary storage that doesn't want repeated malloc */
void *scratch_buffer2; /* if the first one's already in use */
pixel *intra_border_backup[5][3]; /* bottom pixels of the previous mb row, used for intra prediction after the framebuffer has been deblocked */
/* Deblock strength values are stored for each 4x4 partition. In MBAFF
* there are four extra values that need to be stored, located in [4][i]. */
uint8_t (*deblock_strength[2])[2][8][4];
/* CPU functions dependents */
x264_predict_t predict_16x16[4+3];
x264_predict8x8_t predict_8x8[9+3];
x264_predict_t predict_4x4[9+3];
x264_predict_t predict_chroma[4+3];
x264_predict_t predict_8x8c[4+3];
x264_predict_t predict_8x16c[4+3];
x264_predict_8x8_filter_t predict_8x8_filter;
x264_pixel_function_t pixf;
x264_mc_functions_t mc;
x264_dct_function_t dctf;
x264_zigzag_function_t zigzagf;
x264_zigzag_function_t zigzagf_interlaced;
x264_zigzag_function_t zigzagf_progressive;
x264_quant_function_t quantf;
x264_deblock_function_t loopf;
x264_bitstream_function_t bsf;
x264_lookahead_t *lookahead;
#if HAVE_OPENCL
x264_opencl_t opencl;
#endif
};
typedef struct
{
int sad;
int16_t mv[2];
} mvsad_t;
// included at the end because it needs x264_t
#include "macroblock.h"
static ALWAYS_INLINE int x264_predictor_roundclip( int16_t (*dst)[2], int16_t (*mvc)[2], int i_mvc, int16_t mv_limit[2][2], uint32_t pmv )
{
int cnt = 0;
for( int i = 0; i < i_mvc; i++ )
{
int mx = (mvc[i][0] + 2) >> 2;
int my = (mvc[i][1] + 2) >> 2;
uint32_t mv = pack16to32_mask(mx, my);
if( !mv || mv == pmv ) continue;
dst[cnt][0] = x264_clip3( mx, mv_limit[0][0], mv_limit[1][0] );
dst[cnt][1] = x264_clip3( my, mv_limit[0][1], mv_limit[1][1] );
cnt++;
}
return cnt;
}
static ALWAYS_INLINE int x264_predictor_clip( int16_t (*dst)[2], int16_t (*mvc)[2], int i_mvc, int16_t mv_limit[2][2], uint32_t pmv )
{
int cnt = 0;
int qpel_limit[4] = {mv_limit[0][0] << 2, mv_limit[0][1] << 2, mv_limit[1][0] << 2, mv_limit[1][1] << 2};
for( int i = 0; i < i_mvc; i++ )
{
uint32_t mv = M32( mvc[i] );
int mx = mvc[i][0];
int my = mvc[i][1];
if( !mv || mv == pmv ) continue;
dst[cnt][0] = x264_clip3( mx, qpel_limit[0], qpel_limit[2] );
dst[cnt][1] = x264_clip3( my, qpel_limit[1], qpel_limit[3] );
cnt++;
}
return cnt;
}
#if ARCH_X86 || ARCH_X86_64
#include "x86/util.h"
#endif
#include "rectangle.h"
#endif