2025-04-28 08:47:28 +08:00

785 lines
27 KiB
C

/*****************************************************************************
* mc.c: motion compensation
*****************************************************************************
* Copyright (C) 2003-2025 x264 project
*
* Authors: Laurent Aimar <fenrir@via.ecp.fr>
* Loren Merritt <lorenm@u.washington.edu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#include "common.h"
#if HAVE_MMX
#include "x86/mc.h"
#endif
#if HAVE_ALTIVEC
#include "ppc/mc.h"
#endif
#if HAVE_ARMV6
#include "arm/mc.h"
#endif
#if HAVE_AARCH64
#include "aarch64/mc.h"
#endif
#if HAVE_MSA
#include "mips/mc.h"
#endif
#if HAVE_LSX
# include "loongarch/mc.h"
#endif
static inline void pixel_avg( pixel *dst, intptr_t i_dst_stride,
pixel *src1, intptr_t i_src1_stride,
pixel *src2, intptr_t i_src2_stride, int i_width, int i_height )
{
for( int y = 0; y < i_height; y++ )
{
for( int x = 0; x < i_width; x++ )
dst[x] = ( src1[x] + src2[x] + 1 ) >> 1;
dst += i_dst_stride;
src1 += i_src1_stride;
src2 += i_src2_stride;
}
}
static inline void pixel_avg_wxh( pixel *dst, intptr_t i_dst,
pixel *src1, intptr_t i_src1,
pixel *src2, intptr_t i_src2, int width, int height )
{
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
dst[x] = ( src1[x] + src2[x] + 1 ) >> 1;
src1 += i_src1;
src2 += i_src2;
dst += i_dst;
}
}
/* Implicit weighted bipred only:
* assumes log2_denom = 5, offset = 0, weight1 + weight2 = 64 */
static inline void pixel_avg_weight_wxh( pixel *dst, intptr_t i_dst,
pixel *src1, intptr_t i_src1,
pixel *src2, intptr_t i_src2, int width, int height, int i_weight1 )
{
int i_weight2 = 64 - i_weight1;
for( int y = 0; y<height; y++, dst += i_dst, src1 += i_src1, src2 += i_src2 )
for( int x = 0; x<width; x++ )
dst[x] = x264_clip_pixel( (src1[x]*i_weight1 + src2[x]*i_weight2 + (1<<5)) >> 6 );
}
#undef op_scale2
#define PIXEL_AVG_C( name, width, height ) \
static void name( pixel *pix1, intptr_t i_stride_pix1, \
pixel *pix2, intptr_t i_stride_pix2, \
pixel *pix3, intptr_t i_stride_pix3, int weight ) \
{ \
if( weight == 32 ) \
pixel_avg_wxh( pix1, i_stride_pix1, pix2, i_stride_pix2, pix3, i_stride_pix3, width, height ); \
else \
pixel_avg_weight_wxh( pix1, i_stride_pix1, pix2, i_stride_pix2, pix3, i_stride_pix3, width, height, weight ); \
}
PIXEL_AVG_C( pixel_avg_16x16, 16, 16 )
PIXEL_AVG_C( pixel_avg_16x8, 16, 8 )
PIXEL_AVG_C( pixel_avg_8x16, 8, 16 )
PIXEL_AVG_C( pixel_avg_8x8, 8, 8 )
PIXEL_AVG_C( pixel_avg_8x4, 8, 4 )
PIXEL_AVG_C( pixel_avg_4x16, 4, 16 )
PIXEL_AVG_C( pixel_avg_4x8, 4, 8 )
PIXEL_AVG_C( pixel_avg_4x4, 4, 4 )
PIXEL_AVG_C( pixel_avg_4x2, 4, 2 )
PIXEL_AVG_C( pixel_avg_2x8, 2, 8 )
PIXEL_AVG_C( pixel_avg_2x4, 2, 4 )
PIXEL_AVG_C( pixel_avg_2x2, 2, 2 )
static void weight_cache( x264_t *h, x264_weight_t *w )
{
w->weightfn = h->mc.weight;
}
#define opscale(x) dst[x] = x264_clip_pixel( ((src[x] * scale + (1<<(denom - 1))) >> denom) + offset )
#define opscale_noden(x) dst[x] = x264_clip_pixel( src[x] * scale + offset )
static void mc_weight( pixel *dst, intptr_t i_dst_stride, pixel *src, intptr_t i_src_stride,
const x264_weight_t *weight, int i_width, int i_height )
{
int offset = weight->i_offset * (1 << (BIT_DEPTH-8));
int scale = weight->i_scale;
int denom = weight->i_denom;
if( denom >= 1 )
{
for( int y = 0; y < i_height; y++, dst += i_dst_stride, src += i_src_stride )
for( int x = 0; x < i_width; x++ )
opscale( x );
}
else
{
for( int y = 0; y < i_height; y++, dst += i_dst_stride, src += i_src_stride )
for( int x = 0; x < i_width; x++ )
opscale_noden( x );
}
}
#define MC_WEIGHT_C( name, width ) \
static void name( pixel *dst, intptr_t i_dst_stride, pixel *src, intptr_t i_src_stride, const x264_weight_t *weight, int height ) \
{ \
mc_weight( dst, i_dst_stride, src, i_src_stride, weight, width, height );\
}
MC_WEIGHT_C( mc_weight_w20, 20 )
MC_WEIGHT_C( mc_weight_w16, 16 )
MC_WEIGHT_C( mc_weight_w12, 12 )
MC_WEIGHT_C( mc_weight_w8, 8 )
MC_WEIGHT_C( mc_weight_w4, 4 )
MC_WEIGHT_C( mc_weight_w2, 2 )
static weight_fn_t mc_weight_wtab[6] =
{
mc_weight_w2,
mc_weight_w4,
mc_weight_w8,
mc_weight_w12,
mc_weight_w16,
mc_weight_w20,
};
static void mc_copy( pixel *src, intptr_t i_src_stride, pixel *dst, intptr_t i_dst_stride, int i_width, int i_height )
{
for( int y = 0; y < i_height; y++ )
{
memcpy( dst, src, i_width * SIZEOF_PIXEL );
src += i_src_stride;
dst += i_dst_stride;
}
}
#define TAPFILTER(pix, d) ((pix)[x-2*d] + (pix)[x+3*d] - 5*((pix)[x-d] + (pix)[x+2*d]) + 20*((pix)[x] + (pix)[x+d]))
static void hpel_filter( pixel *dsth, pixel *dstv, pixel *dstc, pixel *src,
intptr_t stride, int width, int height, int16_t *buf )
{
const int pad = (BIT_DEPTH > 9) ? (-10 * PIXEL_MAX) : 0;
for( int y = 0; y < height; y++ )
{
for( int x = -2; x < width+3; x++ )
{
int v = TAPFILTER(src,stride);
dstv[x] = x264_clip_pixel( (v + 16) >> 5 );
/* transform v for storage in a 16-bit integer */
buf[x+2] = v + pad;
}
for( int x = 0; x < width; x++ )
dstc[x] = x264_clip_pixel( (TAPFILTER(buf+2,1) - 32*pad + 512) >> 10 );
for( int x = 0; x < width; x++ )
dsth[x] = x264_clip_pixel( (TAPFILTER(src,1) + 16) >> 5 );
dsth += stride;
dstv += stride;
dstc += stride;
src += stride;
}
}
static void mc_luma( pixel *dst, intptr_t i_dst_stride,
pixel *src[4], intptr_t i_src_stride,
int mvx, int mvy,
int i_width, int i_height, const x264_weight_t *weight )
{
int qpel_idx = ((mvy&3)<<2) + (mvx&3);
int offset = (mvy>>2)*i_src_stride + (mvx>>2);
pixel *src1 = src[x264_hpel_ref0[qpel_idx]] + offset + ((mvy&3) == 3) * i_src_stride;
if( qpel_idx & 5 ) /* qpel interpolation needed */
{
pixel *src2 = src[x264_hpel_ref1[qpel_idx]] + offset + ((mvx&3) == 3);
pixel_avg( dst, i_dst_stride, src1, i_src_stride,
src2, i_src_stride, i_width, i_height );
if( weight->weightfn )
mc_weight( dst, i_dst_stride, dst, i_dst_stride, weight, i_width, i_height );
}
else if( weight->weightfn )
mc_weight( dst, i_dst_stride, src1, i_src_stride, weight, i_width, i_height );
else
mc_copy( src1, i_src_stride, dst, i_dst_stride, i_width, i_height );
}
static pixel *get_ref( pixel *dst, intptr_t *i_dst_stride,
pixel *src[4], intptr_t i_src_stride,
int mvx, int mvy,
int i_width, int i_height, const x264_weight_t *weight )
{
int qpel_idx = ((mvy&3)<<2) + (mvx&3);
int offset = (mvy>>2)*i_src_stride + (mvx>>2);
pixel *src1 = src[x264_hpel_ref0[qpel_idx]] + offset + ((mvy&3) == 3) * i_src_stride;
if( qpel_idx & 5 ) /* qpel interpolation needed */
{
pixel *src2 = src[x264_hpel_ref1[qpel_idx]] + offset + ((mvx&3) == 3);
pixel_avg( dst, *i_dst_stride, src1, i_src_stride,
src2, i_src_stride, i_width, i_height );
if( weight->weightfn )
mc_weight( dst, *i_dst_stride, dst, *i_dst_stride, weight, i_width, i_height );
return dst;
}
else if( weight->weightfn )
{
mc_weight( dst, *i_dst_stride, src1, i_src_stride, weight, i_width, i_height );
return dst;
}
else
{
*i_dst_stride = i_src_stride;
return src1;
}
}
/* full chroma mc (ie until 1/8 pixel)*/
static void mc_chroma( pixel *dstu, pixel *dstv, intptr_t i_dst_stride,
pixel *src, intptr_t i_src_stride,
int mvx, int mvy,
int i_width, int i_height )
{
pixel *srcp;
int d8x = mvx&0x07;
int d8y = mvy&0x07;
int cA = (8-d8x)*(8-d8y);
int cB = d8x *(8-d8y);
int cC = (8-d8x)*d8y;
int cD = d8x *d8y;
src += (mvy >> 3) * i_src_stride + (mvx >> 3)*2;
srcp = &src[i_src_stride];
for( int y = 0; y < i_height; y++ )
{
for( int x = 0; x < i_width; x++ )
{
dstu[x] = ( cA*src[2*x] + cB*src[2*x+2] +
cC*srcp[2*x] + cD*srcp[2*x+2] + 32 ) >> 6;
dstv[x] = ( cA*src[2*x+1] + cB*src[2*x+3] +
cC*srcp[2*x+1] + cD*srcp[2*x+3] + 32 ) >> 6;
}
dstu += i_dst_stride;
dstv += i_dst_stride;
src = srcp;
srcp += i_src_stride;
}
}
#define MC_COPY(W) \
static void mc_copy_w##W( pixel *dst, intptr_t i_dst, pixel *src, intptr_t i_src, int i_height ) \
{ \
mc_copy( src, i_src, dst, i_dst, W, i_height ); \
}
MC_COPY( 16 )
MC_COPY( 8 )
MC_COPY( 4 )
void x264_plane_copy_c( pixel *dst, intptr_t i_dst,
pixel *src, intptr_t i_src, int w, int h )
{
while( h-- )
{
memcpy( dst, src, w * SIZEOF_PIXEL );
dst += i_dst;
src += i_src;
}
}
void x264_plane_copy_swap_c( pixel *dst, intptr_t i_dst,
pixel *src, intptr_t i_src, int w, int h )
{
for( int y=0; y<h; y++, dst+=i_dst, src+=i_src )
for( int x=0; x<2*w; x+=2 )
{
dst[x] = src[x+1];
dst[x+1] = src[x];
}
}
void x264_plane_copy_interleave_c( pixel *dst, intptr_t i_dst,
pixel *srcu, intptr_t i_srcu,
pixel *srcv, intptr_t i_srcv, int w, int h )
{
for( int y=0; y<h; y++, dst+=i_dst, srcu+=i_srcu, srcv+=i_srcv )
for( int x=0; x<w; x++ )
{
dst[2*x] = srcu[x];
dst[2*x+1] = srcv[x];
}
}
void x264_plane_copy_deinterleave_c( pixel *dsta, intptr_t i_dsta, pixel *dstb, intptr_t i_dstb,
pixel *src, intptr_t i_src, int w, int h )
{
for( int y=0; y<h; y++, dsta+=i_dsta, dstb+=i_dstb, src+=i_src )
for( int x=0; x<w; x++ )
{
dsta[x] = src[2*x];
dstb[x] = src[2*x+1];
}
}
static void plane_copy_deinterleave_rgb_c( pixel *dsta, intptr_t i_dsta,
pixel *dstb, intptr_t i_dstb,
pixel *dstc, intptr_t i_dstc,
pixel *src, intptr_t i_src, int pw, int w, int h )
{
for( int y=0; y<h; y++, dsta+=i_dsta, dstb+=i_dstb, dstc+=i_dstc, src+=i_src )
{
for( int x=0; x<w; x++ )
{
dsta[x] = src[x*pw];
dstb[x] = src[x*pw+1];
dstc[x] = src[x*pw+2];
}
}
}
#if WORDS_BIGENDIAN
static ALWAYS_INLINE uint32_t v210_endian_fix32( uint32_t x )
{
return (x<<24) + ((x<<8)&0xff0000) + ((x>>8)&0xff00) + (x>>24);
}
#else
#define v210_endian_fix32(x) (x)
#endif
static void plane_copy_deinterleave_v210_c( pixel *dsty, intptr_t i_dsty,
pixel *dstc, intptr_t i_dstc,
uint32_t *src, intptr_t i_src, int w, int h )
{
for( int l = 0; l < h; l++ )
{
pixel *dsty0 = dsty;
pixel *dstc0 = dstc;
uint32_t *src0 = src;
for( int n = 0; n < w; n += 3 )
{
uint32_t s = v210_endian_fix32( *src0++ );
*dstc0++ = s & 0x03FF;
*dsty0++ = (s >> 10) & 0x03FF;
*dstc0++ = (s >> 20) & 0x03FF;
s = v210_endian_fix32( *src0++ );
*dsty0++ = s & 0x03FF;
*dstc0++ = (s >> 10) & 0x03FF;
*dsty0++ = (s >> 20) & 0x03FF;
}
dsty += i_dsty;
dstc += i_dstc;
src += i_src;
}
}
static void store_interleave_chroma( pixel *dst, intptr_t i_dst, pixel *srcu, pixel *srcv, int height )
{
for( int y=0; y<height; y++, dst+=i_dst, srcu+=FDEC_STRIDE, srcv+=FDEC_STRIDE )
for( int x=0; x<8; x++ )
{
dst[2*x] = srcu[x];
dst[2*x+1] = srcv[x];
}
}
static void load_deinterleave_chroma_fenc( pixel *dst, pixel *src, intptr_t i_src, int height )
{
x264_plane_copy_deinterleave_c( dst, FENC_STRIDE, dst+FENC_STRIDE/2, FENC_STRIDE, src, i_src, 8, height );
}
static void load_deinterleave_chroma_fdec( pixel *dst, pixel *src, intptr_t i_src, int height )
{
x264_plane_copy_deinterleave_c( dst, FDEC_STRIDE, dst+FDEC_STRIDE/2, FDEC_STRIDE, src, i_src, 8, height );
}
static void prefetch_fenc_null( pixel *pix_y, intptr_t stride_y,
pixel *pix_uv, intptr_t stride_uv, int mb_x )
{}
static void prefetch_ref_null( pixel *pix, intptr_t stride, int parity )
{}
static void memzero_aligned( void * dst, size_t n )
{
memset( dst, 0, n );
}
static void integral_init4h( uint16_t *sum, pixel *pix, intptr_t stride )
{
int v = pix[0]+pix[1]+pix[2]+pix[3];
for( int x = 0; x < stride-4; x++ )
{
sum[x] = (uint16_t)(v + sum[x-stride]);
v += pix[x+4] - pix[x];
}
}
static void integral_init8h( uint16_t *sum, pixel *pix, intptr_t stride )
{
int v = pix[0]+pix[1]+pix[2]+pix[3]+pix[4]+pix[5]+pix[6]+pix[7];
for( int x = 0; x < stride-8; x++ )
{
sum[x] = (uint16_t)(v + sum[x-stride]);
v += pix[x+8] - pix[x];
}
}
static void integral_init4v( uint16_t *sum8, uint16_t *sum4, intptr_t stride )
{
for( int x = 0; x < stride-8; x++ )
sum4[x] = (uint16_t)(sum8[x+4*stride] - sum8[x]);
for( int x = 0; x < stride-8; x++ )
sum8[x] = (uint16_t)(sum8[x+8*stride] + sum8[x+8*stride+4] - sum8[x] - sum8[x+4]);
}
static void integral_init8v( uint16_t *sum8, intptr_t stride )
{
for( int x = 0; x < stride-8; x++ )
sum8[x] = (uint16_t)(sum8[x+8*stride] - sum8[x]);
}
void x264_frame_init_lowres( x264_t *h, x264_frame_t *frame )
{
pixel *src = frame->plane[0];
int i_stride = frame->i_stride[0];
int i_height = frame->i_lines[0];
int i_width = frame->i_width[0];
// duplicate last row and column so that their interpolation doesn't have to be special-cased
for( int y = 0; y < i_height; y++ )
src[i_width+y*i_stride] = src[i_width-1+y*i_stride];
memcpy( src+i_stride*i_height, src+i_stride*(i_height-1), (i_width+1) * SIZEOF_PIXEL );
h->mc.frame_init_lowres_core( src, frame->lowres[0], frame->lowres[1], frame->lowres[2], frame->lowres[3],
i_stride, frame->i_stride_lowres, frame->i_width_lowres, frame->i_lines_lowres );
x264_frame_expand_border_lowres( frame );
memset( frame->i_cost_est, -1, sizeof(frame->i_cost_est) );
for( int y = 0; y < h->param.i_bframe + 2; y++ )
for( int x = 0; x < h->param.i_bframe + 2; x++ )
frame->i_row_satds[y][x][0] = -1;
for( int y = 0; y <= !!h->param.i_bframe; y++ )
for( int x = 0; x <= h->param.i_bframe; x++ )
frame->lowres_mvs[y][x][0][0] = 0x7FFF;
}
static void frame_init_lowres_core( pixel *src0, pixel *dst0, pixel *dsth, pixel *dstv, pixel *dstc,
intptr_t src_stride, intptr_t dst_stride, int width, int height )
{
for( int y = 0; y < height; y++ )
{
pixel *src1 = src0+src_stride;
pixel *src2 = src1+src_stride;
for( int x = 0; x<width; x++ )
{
// slower than naive bilinear, but matches asm
#define FILTER(a,b,c,d) ((((a+b+1)>>1)+((c+d+1)>>1)+1)>>1)
dst0[x] = FILTER(src0[2*x ], src1[2*x ], src0[2*x+1], src1[2*x+1]);
dsth[x] = FILTER(src0[2*x+1], src1[2*x+1], src0[2*x+2], src1[2*x+2]);
dstv[x] = FILTER(src1[2*x ], src2[2*x ], src1[2*x+1], src2[2*x+1]);
dstc[x] = FILTER(src1[2*x+1], src2[2*x+1], src1[2*x+2], src2[2*x+2]);
#undef FILTER
}
src0 += src_stride*2;
dst0 += dst_stride;
dsth += dst_stride;
dstv += dst_stride;
dstc += dst_stride;
}
}
/* Estimate the total amount of influence on future quality that could be had if we
* were to improve the reference samples used to inter predict any given macroblock. */
static void mbtree_propagate_cost( int16_t *dst, uint16_t *propagate_in, uint16_t *intra_costs,
uint16_t *inter_costs, uint16_t *inv_qscales, float *fps_factor, int len )
{
float fps = *fps_factor;
for( int i = 0; i < len; i++ )
{
int intra_cost = intra_costs[i];
int inter_cost = X264_MIN(intra_costs[i], inter_costs[i] & LOWRES_COST_MASK);
float propagate_intra = intra_cost * inv_qscales[i];
float propagate_amount = propagate_in[i] + propagate_intra*fps;
float propagate_num = intra_cost - inter_cost;
float propagate_denom = intra_cost;
dst[i] = X264_MIN((int)(propagate_amount * propagate_num / propagate_denom + 0.5f), 32767);
}
}
static void mbtree_propagate_list( x264_t *h, uint16_t *ref_costs, int16_t (*mvs)[2],
int16_t *propagate_amount, uint16_t *lowres_costs,
int bipred_weight, int mb_y, int len, int list )
{
unsigned stride = h->mb.i_mb_stride;
unsigned width = h->mb.i_mb_width;
unsigned height = h->mb.i_mb_height;
for( int i = 0; i < len; i++ )
{
int lists_used = lowres_costs[i]>>LOWRES_COST_SHIFT;
if( !(lists_used & (1 << list)) )
continue;
int listamount = propagate_amount[i];
/* Apply bipred weighting. */
if( lists_used == 3 )
listamount = (listamount * bipred_weight + 32) >> 6;
/* Early termination for simple case of mv0. */
if( !M32( mvs[i] ) )
{
MC_CLIP_ADD( ref_costs[mb_y*stride + i], listamount );
continue;
}
int x = mvs[i][0];
int y = mvs[i][1];
unsigned mbx = (unsigned)((x>>5)+i);
unsigned mby = (unsigned)((y>>5)+mb_y);
unsigned idx0 = mbx + mby * stride;
unsigned idx2 = idx0 + stride;
x &= 31;
y &= 31;
int idx0weight = (32-y)*(32-x);
int idx1weight = (32-y)*x;
int idx2weight = y*(32-x);
int idx3weight = y*x;
idx0weight = (idx0weight * listamount + 512) >> 10;
idx1weight = (idx1weight * listamount + 512) >> 10;
idx2weight = (idx2weight * listamount + 512) >> 10;
idx3weight = (idx3weight * listamount + 512) >> 10;
if( mbx < width-1 && mby < height-1 )
{
MC_CLIP_ADD( ref_costs[idx0+0], idx0weight );
MC_CLIP_ADD( ref_costs[idx0+1], idx1weight );
MC_CLIP_ADD( ref_costs[idx2+0], idx2weight );
MC_CLIP_ADD( ref_costs[idx2+1], idx3weight );
}
else
{
/* Note: this takes advantage of unsigned representation to
* catch negative mbx/mby. */
if( mby < height )
{
if( mbx < width )
MC_CLIP_ADD( ref_costs[idx0+0], idx0weight );
if( mbx+1 < width )
MC_CLIP_ADD( ref_costs[idx0+1], idx1weight );
}
if( mby+1 < height )
{
if( mbx < width )
MC_CLIP_ADD( ref_costs[idx2+0], idx2weight );
if( mbx+1 < width )
MC_CLIP_ADD( ref_costs[idx2+1], idx3weight );
}
}
}
}
/* Conversion between float and Q8.8 fixed point (big-endian) for storage */
static void mbtree_fix8_pack( uint16_t *dst, float *src, int count )
{
for( int i = 0; i < count; i++ )
dst[i] = endian_fix16( (int16_t)(src[i] * 256.0f) );
}
static void mbtree_fix8_unpack( float *dst, uint16_t *src, int count )
{
for( int i = 0; i < count; i++ )
dst[i] = (int16_t)endian_fix16( src[i] ) * (1.0f/256.0f);
}
void x264_mc_init( uint32_t cpu, x264_mc_functions_t *pf, int cpu_independent )
{
pf->mc_luma = mc_luma;
pf->get_ref = get_ref;
pf->mc_chroma = mc_chroma;
pf->avg[PIXEL_16x16]= pixel_avg_16x16;
pf->avg[PIXEL_16x8] = pixel_avg_16x8;
pf->avg[PIXEL_8x16] = pixel_avg_8x16;
pf->avg[PIXEL_8x8] = pixel_avg_8x8;
pf->avg[PIXEL_8x4] = pixel_avg_8x4;
pf->avg[PIXEL_4x16] = pixel_avg_4x16;
pf->avg[PIXEL_4x8] = pixel_avg_4x8;
pf->avg[PIXEL_4x4] = pixel_avg_4x4;
pf->avg[PIXEL_4x2] = pixel_avg_4x2;
pf->avg[PIXEL_2x8] = pixel_avg_2x8;
pf->avg[PIXEL_2x4] = pixel_avg_2x4;
pf->avg[PIXEL_2x2] = pixel_avg_2x2;
pf->weight = mc_weight_wtab;
pf->offsetadd = mc_weight_wtab;
pf->offsetsub = mc_weight_wtab;
pf->weight_cache = weight_cache;
pf->copy_16x16_unaligned = mc_copy_w16;
pf->copy[PIXEL_16x16] = mc_copy_w16;
pf->copy[PIXEL_8x8] = mc_copy_w8;
pf->copy[PIXEL_4x4] = mc_copy_w4;
pf->store_interleave_chroma = store_interleave_chroma;
pf->load_deinterleave_chroma_fenc = load_deinterleave_chroma_fenc;
pf->load_deinterleave_chroma_fdec = load_deinterleave_chroma_fdec;
pf->plane_copy = x264_plane_copy_c;
pf->plane_copy_swap = x264_plane_copy_swap_c;
pf->plane_copy_interleave = x264_plane_copy_interleave_c;
pf->plane_copy_deinterleave = x264_plane_copy_deinterleave_c;
pf->plane_copy_deinterleave_yuyv = x264_plane_copy_deinterleave_c;
pf->plane_copy_deinterleave_rgb = plane_copy_deinterleave_rgb_c;
pf->plane_copy_deinterleave_v210 = plane_copy_deinterleave_v210_c;
pf->hpel_filter = hpel_filter;
pf->prefetch_fenc_400 = prefetch_fenc_null;
pf->prefetch_fenc_420 = prefetch_fenc_null;
pf->prefetch_fenc_422 = prefetch_fenc_null;
pf->prefetch_ref = prefetch_ref_null;
pf->memcpy_aligned = memcpy;
pf->memzero_aligned = memzero_aligned;
pf->frame_init_lowres_core = frame_init_lowres_core;
pf->integral_init4h = integral_init4h;
pf->integral_init8h = integral_init8h;
pf->integral_init4v = integral_init4v;
pf->integral_init8v = integral_init8v;
pf->mbtree_propagate_cost = mbtree_propagate_cost;
pf->mbtree_propagate_list = mbtree_propagate_list;
pf->mbtree_fix8_pack = mbtree_fix8_pack;
pf->mbtree_fix8_unpack = mbtree_fix8_unpack;
#if HAVE_MMX
x264_mc_init_mmx( cpu, pf );
#endif
#if HAVE_ALTIVEC
if( cpu&X264_CPU_ALTIVEC )
x264_mc_init_altivec( pf );
#endif
#if HAVE_ARMV6
x264_mc_init_arm( cpu, pf );
#endif
#if HAVE_AARCH64
x264_mc_init_aarch64( cpu, pf );
#endif
#if HAVE_MSA
if( cpu&X264_CPU_MSA )
x264_mc_init_mips( cpu, pf );
#endif
#if HAVE_LSX
x264_mc_init_loongarch( cpu, pf );
#endif
if( cpu_independent )
{
pf->mbtree_propagate_cost = mbtree_propagate_cost;
pf->mbtree_propagate_list = mbtree_propagate_list;
}
}
void x264_frame_filter( x264_t *h, x264_frame_t *frame, int mb_y, int b_end )
{
const int b_interlaced = PARAM_INTERLACED;
int start = mb_y*16 - 8; // buffer = 4 for deblock + 3 for 6tap, rounded to 8
int height = (b_end ? frame->i_lines[0] + 16*PARAM_INTERLACED : (mb_y+b_interlaced)*16) + 8;
if( mb_y & b_interlaced )
return;
for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ )
{
int stride = frame->i_stride[p];
const int width = frame->i_width[p];
int offs = start*stride - 8; // buffer = 3 for 6tap, aligned to 8 for simd
if( !b_interlaced || h->mb.b_adaptive_mbaff )
h->mc.hpel_filter(
frame->filtered[p][1] + offs,
frame->filtered[p][2] + offs,
frame->filtered[p][3] + offs,
frame->plane[p] + offs,
stride, width + 16, height - start,
h->scratch_buffer );
if( b_interlaced )
{
/* MC must happen between pixels in the same field. */
stride = frame->i_stride[p] << 1;
start = (mb_y*16 >> 1) - 8;
int height_fld = ((b_end ? frame->i_lines[p] : mb_y*16) >> 1) + 8;
offs = start*stride - 8;
for( int i = 0; i < 2; i++, offs += frame->i_stride[p] )
{
h->mc.hpel_filter(
frame->filtered_fld[p][1] + offs,
frame->filtered_fld[p][2] + offs,
frame->filtered_fld[p][3] + offs,
frame->plane_fld[p] + offs,
stride, width + 16, height_fld - start,
h->scratch_buffer );
}
}
}
/* generate integral image:
* frame->integral contains 2 planes. in the upper plane, each element is
* the sum of an 8x8 pixel region with top-left corner on that point.
* in the lower plane, 4x4 sums (needed only with --partitions p4x4). */
if( frame->integral )
{
int stride = frame->i_stride[0];
if( start < 0 )
{
memset( frame->integral - PADV * stride - PADH_ALIGN, 0, stride * sizeof(uint16_t) );
start = -PADV;
}
if( b_end )
height += PADV-9;
for( int y = start; y < height; y++ )
{
pixel *pix = frame->plane[0] + y * stride - PADH_ALIGN;
uint16_t *sum8 = frame->integral + (y+1) * stride - PADH_ALIGN;
uint16_t *sum4;
if( h->frames.b_have_sub8x8_esa )
{
h->mc.integral_init4h( sum8, pix, stride );
sum8 -= 8*stride;
sum4 = sum8 + stride * (frame->i_lines[0] + PADV*2);
if( y >= 8-PADV )
h->mc.integral_init4v( sum8, sum4, stride );
}
else
{
h->mc.integral_init8h( sum8, pix, stride );
if( y >= 8-PADV )
h->mc.integral_init8v( sum8-8*stride, stride );
}
}
}
}