2025-04-28 08:47:28 +08:00

1356 lines
53 KiB
C

/*****************************************************************************
* me.c: motion estimation
*****************************************************************************
* Copyright (C) 2003-2025 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Laurent Aimar <fenrir@via.ecp.fr>
* Fiona Glaser <fiona@x264.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#include "common/common.h"
#include "macroblock.h"
#include "me.h"
/* presets selected from good points on the speed-vs-quality curve of several test videos
* subpel_iters[i_subpel_refine] = { refine_hpel, refine_qpel, me_hpel, me_qpel }
* where me_* are the number of EPZS iterations run on all candidate block types,
* and refine_* are run only on the winner.
* the subme=8,9 values are much higher because any amount of satd search makes
* up its time by reducing the number of qpel-rd iterations. */
static const uint8_t subpel_iterations[][4] =
{{0,0,0,0},
{1,1,0,0},
{0,1,1,0},
{0,2,1,0},
{0,2,1,1},
{0,2,1,2},
{0,0,2,2},
{0,0,2,2},
{0,0,4,10},
{0,0,4,10},
{0,0,4,10},
{0,0,4,10}};
/* (x-1)%6 */
static const uint8_t mod6m1[8] = {5,0,1,2,3,4,5,0};
/* radius 2 hexagon. repeated entries are to avoid having to compute mod6 every time. */
static const int8_t hex2[8][2] = {{-1,-2}, {-2,0}, {-1,2}, {1,2}, {2,0}, {1,-2}, {-1,-2}, {-2,0}};
static const int8_t square1[9][2] = {{0,0}, {0,-1}, {0,1}, {-1,0}, {1,0}, {-1,-1}, {-1,1}, {1,-1}, {1,1}};
static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel );
#define BITS_MVD( mx, my )\
(p_cost_mvx[(mx)*4] + p_cost_mvy[(my)*4])
#define COST_MV( mx, my )\
do\
{\
int cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE,\
&p_fref_w[(my)*stride+(mx)], stride )\
+ BITS_MVD(mx,my);\
COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my );\
} while( 0 )
#define COST_MV_HPEL( mx, my, cost )\
do\
{\
intptr_t stride2 = 16;\
pixel *src = h->mc.get_ref( pix, &stride2, m->p_fref, stride, mx, my, bw, bh, &m->weight[0] );\
cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, src, stride2 )\
+ p_cost_mvx[ mx ] + p_cost_mvy[ my ];\
} while( 0 )
#define COST_MV_X3_DIR( m0x, m0y, m1x, m1y, m2x, m2y, costs )\
{\
pixel *pix_base = p_fref_w + bmx + bmy*stride;\
h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
pix_base + (m0x) + (m0y)*stride,\
pix_base + (m1x) + (m1y)*stride,\
pix_base + (m2x) + (m2y)*stride,\
stride, costs );\
(costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
(costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
(costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
}
#define COST_MV_X4_DIR( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y, costs )\
{\
pixel *pix_base = p_fref_w + bmx + bmy*stride;\
h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
pix_base + (m0x) + (m0y)*stride,\
pix_base + (m1x) + (m1y)*stride,\
pix_base + (m2x) + (m2y)*stride,\
pix_base + (m3x) + (m3y)*stride,\
stride, costs );\
(costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
(costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
(costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
(costs)[3] += BITS_MVD( bmx+(m3x), bmy+(m3y) );\
}
#define COST_MV_X4( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y )\
{\
pixel *pix_base = p_fref_w + omx + omy*stride;\
h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
pix_base + (m0x) + (m0y)*stride,\
pix_base + (m1x) + (m1y)*stride,\
pix_base + (m2x) + (m2y)*stride,\
pix_base + (m3x) + (m3y)*stride,\
stride, costs );\
costs[0] += BITS_MVD( omx+(m0x), omy+(m0y) );\
costs[1] += BITS_MVD( omx+(m1x), omy+(m1y) );\
costs[2] += BITS_MVD( omx+(m2x), omy+(m2y) );\
costs[3] += BITS_MVD( omx+(m3x), omy+(m3y) );\
COPY3_IF_LT( bcost, costs[0], bmx, omx+(m0x), bmy, omy+(m0y) );\
COPY3_IF_LT( bcost, costs[1], bmx, omx+(m1x), bmy, omy+(m1y) );\
COPY3_IF_LT( bcost, costs[2], bmx, omx+(m2x), bmy, omy+(m2y) );\
COPY3_IF_LT( bcost, costs[3], bmx, omx+(m3x), bmy, omy+(m3y) );\
}
#define COST_MV_X3_ABS( m0x, m0y, m1x, m1y, m2x, m2y )\
{\
h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
p_fref_w + (m0x) + (m0y)*stride,\
p_fref_w + (m1x) + (m1y)*stride,\
p_fref_w + (m2x) + (m2y)*stride,\
stride, costs );\
costs[0] += p_cost_mvx[(m0x)*4]; /* no cost_mvy */\
costs[1] += p_cost_mvx[(m1x)*4];\
costs[2] += p_cost_mvx[(m2x)*4];\
COPY3_IF_LT( bcost, costs[0], bmx, m0x, bmy, m0y );\
COPY3_IF_LT( bcost, costs[1], bmx, m1x, bmy, m1y );\
COPY3_IF_LT( bcost, costs[2], bmx, m2x, bmy, m2y );\
}
/* 1 */
/* 101 */
/* 1 */
#define DIA1_ITER( mx, my )\
{\
omx = mx; omy = my;\
COST_MV_X4( 0,-1, 0,1, -1,0, 1,0 );\
}
#define CROSS( start, x_max, y_max )\
{\
int i = start;\
if( (x_max) <= X264_MIN(mv_x_max-omx, omx-mv_x_min) )\
for( ; i < (x_max)-2; i+=4 )\
COST_MV_X4( i,0, -i,0, i+2,0, -i-2,0 );\
for( ; i < (x_max); i+=2 )\
{\
if( omx+i <= mv_x_max )\
COST_MV( omx+i, omy );\
if( omx-i >= mv_x_min )\
COST_MV( omx-i, omy );\
}\
i = start;\
if( (y_max) <= X264_MIN(mv_y_max-omy, omy-mv_y_min) )\
for( ; i < (y_max)-2; i+=4 )\
COST_MV_X4( 0,i, 0,-i, 0,i+2, 0,-i-2 );\
for( ; i < (y_max); i+=2 )\
{\
if( omy+i <= mv_y_max )\
COST_MV( omx, omy+i );\
if( omy-i >= mv_y_min )\
COST_MV( omx, omy-i );\
}\
}
#define FPEL(mv) (((mv)+2)>>2) /* Convert subpel MV to fullpel with rounding... */
#define SPEL(mv) ((mv)*4) /* ... and the reverse. */
#define SPELx2(mv) (SPEL(mv)&0xFFFCFFFC) /* for two packed MVs */
void x264_me_search_ref( x264_t *h, x264_me_t *m, int16_t (*mvc)[2], int i_mvc, int *p_halfpel_thresh )
{
const int bw = x264_pixel_size[m->i_pixel].w;
const int bh = x264_pixel_size[m->i_pixel].h;
const int i_pixel = m->i_pixel;
const int stride = m->i_stride[0];
int i_me_range = h->param.analyse.i_me_range;
int bmx, bmy, bcost = COST_MAX;
int bpred_cost = COST_MAX;
int omx, omy, pmx, pmy;
pixel *p_fenc = m->p_fenc[0];
pixel *p_fref_w = m->p_fref_w;
ALIGNED_ARRAY_32( pixel, pix,[16*16] );
ALIGNED_ARRAY_8( int16_t, mvc_temp,[16],[2] );
ALIGNED_ARRAY_16( int, costs,[16] );
int mv_x_min = h->mb.mv_limit_fpel[0][0];
int mv_y_min = h->mb.mv_limit_fpel[0][1];
int mv_x_max = h->mb.mv_limit_fpel[1][0];
int mv_y_max = h->mb.mv_limit_fpel[1][1];
/* Special version of pack to allow shortcuts in CHECK_MVRANGE */
#define pack16to32_mask2(mx,my) (((uint32_t)(mx)<<16)|((uint32_t)(my)&0x7FFF))
uint32_t mv_min = pack16to32_mask2( -mv_x_min, -mv_y_min );
uint32_t mv_max = pack16to32_mask2( mv_x_max, mv_y_max )|0x8000;
uint32_t pmv, bpred_mv = 0;
#define CHECK_MVRANGE(mx,my) (!(((pack16to32_mask2(mx,my) + mv_min) | (mv_max - pack16to32_mask2(mx,my))) & 0x80004000))
const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];
/* Try extra predictors if provided. If subme >= 3, check subpel predictors,
* otherwise round them to fullpel. */
if( h->mb.i_subpel_refine >= 3 )
{
/* Calculate and check the MVP first */
int bpred_mx = x264_clip3( m->mvp[0], SPEL(mv_x_min), SPEL(mv_x_max) );
int bpred_my = x264_clip3( m->mvp[1], SPEL(mv_y_min), SPEL(mv_y_max) );
pmv = pack16to32_mask( bpred_mx, bpred_my );
pmx = FPEL( bpred_mx );
pmy = FPEL( bpred_my );
COST_MV_HPEL( bpred_mx, bpred_my, bpred_cost );
int pmv_cost = bpred_cost;
if( i_mvc > 0 )
{
/* Clip MV candidates and eliminate those equal to zero and pmv. */
int valid_mvcs = x264_predictor_clip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
if( valid_mvcs > 0 )
{
int i = 1, cost;
/* We stuff pmv here to branchlessly pick between pmv and the various
* MV candidates. [0] gets skipped in order to maintain alignment for
* x264_predictor_clip. */
M32( mvc_temp[1] ) = pmv;
bpred_cost <<= 4;
do
{
int mx = mvc_temp[i+1][0];
int my = mvc_temp[i+1][1];
COST_MV_HPEL( mx, my, cost );
COPY1_IF_LT( bpred_cost, (cost << 4) + i );
} while( ++i <= valid_mvcs );
bpred_mx = mvc_temp[(bpred_cost&15)+1][0];
bpred_my = mvc_temp[(bpred_cost&15)+1][1];
bpred_cost >>= 4;
}
}
/* Round the best predictor back to fullpel and get the cost, since this is where
* we'll be starting the fullpel motion search. */
bmx = FPEL( bpred_mx );
bmy = FPEL( bpred_my );
bpred_mv = pack16to32_mask(bpred_mx, bpred_my);
if( bpred_mv&0x00030003 ) /* Only test if the tested predictor is actually subpel... */
COST_MV( bmx, bmy );
else /* Otherwise just copy the cost (we already know it) */
bcost = bpred_cost;
/* Test the zero vector if it hasn't been tested yet. */
if( pmv )
{
if( bmx|bmy ) COST_MV( 0, 0 );
}
/* If a subpel mv candidate was better than the zero vector, the previous
* fullpel check won't have gotten it even if the pmv was zero. So handle
* that possibility here. */
else
{
COPY3_IF_LT( bcost, pmv_cost, bmx, 0, bmy, 0 );
}
}
else
{
/* Calculate and check the fullpel MVP first */
bmx = pmx = x264_clip3( FPEL(m->mvp[0]), mv_x_min, mv_x_max );
bmy = pmy = x264_clip3( FPEL(m->mvp[1]), mv_y_min, mv_y_max );
pmv = pack16to32_mask( bmx, bmy );
/* Because we are rounding the predicted motion vector to fullpel, there will be
* an extra MV cost in 15 out of 16 cases. However, when the predicted MV is
* chosen as the best predictor, it is often the case that the subpel search will
* result in a vector at or next to the predicted motion vector. Therefore, we omit
* the cost of the MV from the rounded MVP to avoid unfairly biasing against use of
* the predicted motion vector.
*
* Disclaimer: this is a post-hoc rationalization for why this hack works. */
bcost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[bmy*stride+bmx], stride );
if( i_mvc > 0 )
{
/* Like in subme>=3, except we also round the candidates to fullpel. */
int valid_mvcs = x264_predictor_roundclip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
if( valid_mvcs > 0 )
{
int i = 1, cost;
M32( mvc_temp[1] ) = pmv;
bcost <<= 4;
do
{
int mx = mvc_temp[i+1][0];
int my = mvc_temp[i+1][1];
cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[my*stride+mx], stride ) + BITS_MVD( mx, my );
COPY1_IF_LT( bcost, (cost << 4) + i );
} while( ++i <= valid_mvcs );
bmx = mvc_temp[(bcost&15)+1][0];
bmy = mvc_temp[(bcost&15)+1][1];
bcost >>= 4;
}
}
/* Same as above, except the condition is simpler. */
if( pmv )
COST_MV( 0, 0 );
}
switch( h->mb.i_me_method )
{
case X264_ME_DIA:
{
/* diamond search, radius 1 */
bcost <<= 4;
int i = i_me_range;
do
{
COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs );
COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
if( !(bcost&15) )
break;
bmx -= (int32_t)((uint32_t)bcost<<28)>>30;
bmy -= (int32_t)((uint32_t)bcost<<30)>>30;
bcost &= ~15;
} while( --i && CHECK_MVRANGE(bmx, bmy) );
bcost >>= 4;
break;
}
case X264_ME_HEX:
{
me_hex2:
/* hexagon search, radius 2 */
#if 0
for( int i = 0; i < i_me_range/2; i++ )
{
omx = bmx; omy = bmy;
COST_MV( omx-2, omy );
COST_MV( omx-1, omy+2 );
COST_MV( omx+1, omy+2 );
COST_MV( omx+2, omy );
COST_MV( omx+1, omy-2 );
COST_MV( omx-1, omy-2 );
if( bmx == omx && bmy == omy )
break;
if( !CHECK_MVRANGE(bmx, bmy) )
break;
}
#else
/* equivalent to the above, but eliminates duplicate candidates */
/* hexagon */
COST_MV_X3_DIR( -2,0, -1, 2, 1, 2, costs );
COST_MV_X3_DIR( 2,0, 1,-2, -1,-2, costs+4 ); /* +4 for 16-byte alignment */
bcost <<= 3;
COPY1_IF_LT( bcost, (costs[0]<<3)+2 );
COPY1_IF_LT( bcost, (costs[1]<<3)+3 );
COPY1_IF_LT( bcost, (costs[2]<<3)+4 );
COPY1_IF_LT( bcost, (costs[4]<<3)+5 );
COPY1_IF_LT( bcost, (costs[5]<<3)+6 );
COPY1_IF_LT( bcost, (costs[6]<<3)+7 );
if( bcost&7 )
{
int dir = (bcost&7)-2;
bmx += hex2[dir+1][0];
bmy += hex2[dir+1][1];
/* half hexagon, not overlapping the previous iteration */
for( int i = (i_me_range>>1) - 1; i > 0 && CHECK_MVRANGE(bmx, bmy); i-- )
{
COST_MV_X3_DIR( hex2[dir+0][0], hex2[dir+0][1],
hex2[dir+1][0], hex2[dir+1][1],
hex2[dir+2][0], hex2[dir+2][1],
costs );
bcost &= ~7;
COPY1_IF_LT( bcost, (costs[0]<<3)+1 );
COPY1_IF_LT( bcost, (costs[1]<<3)+2 );
COPY1_IF_LT( bcost, (costs[2]<<3)+3 );
if( !(bcost&7) )
break;
dir += (bcost&7)-2;
dir = mod6m1[dir+1];
bmx += hex2[dir+1][0];
bmy += hex2[dir+1][1];
}
}
bcost >>= 3;
#endif
/* square refine */
bcost <<= 4;
COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs );
COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
COPY1_IF_LT( bcost, (costs[1]<<4)+2 );
COPY1_IF_LT( bcost, (costs[2]<<4)+3 );
COPY1_IF_LT( bcost, (costs[3]<<4)+4 );
COST_MV_X4_DIR( -1,-1, -1,1, 1,-1, 1,1, costs );
COPY1_IF_LT( bcost, (costs[0]<<4)+5 );
COPY1_IF_LT( bcost, (costs[1]<<4)+6 );
COPY1_IF_LT( bcost, (costs[2]<<4)+7 );
COPY1_IF_LT( bcost, (costs[3]<<4)+8 );
bmx += square1[bcost&15][0];
bmy += square1[bcost&15][1];
bcost >>= 4;
break;
}
case X264_ME_UMH:
{
/* Uneven-cross Multi-Hexagon-grid Search
* as in JM, except with different early termination */
static const uint8_t pixel_size_shift[7] = { 0, 1, 1, 2, 3, 3, 4 };
int ucost1, ucost2;
int cross_start = 1;
/* refine predictors */
ucost1 = bcost;
DIA1_ITER( pmx, pmy );
if( pmx | pmy )
DIA1_ITER( 0, 0 );
if( i_pixel == PIXEL_4x4 )
goto me_hex2;
ucost2 = bcost;
if( (bmx | bmy) && ((bmx-pmx) | (bmy-pmy)) )
DIA1_ITER( bmx, bmy );
if( bcost == ucost2 )
cross_start = 3;
omx = bmx; omy = bmy;
/* early termination */
#define SAD_THRESH(v) ( bcost < ( v >> pixel_size_shift[i_pixel] ) )
if( bcost == ucost2 && SAD_THRESH(2000) )
{
COST_MV_X4( 0,-2, -1,-1, 1,-1, -2,0 );
COST_MV_X4( 2, 0, -1, 1, 1, 1, 0,2 );
if( bcost == ucost1 && SAD_THRESH(500) )
break;
if( bcost == ucost2 )
{
int range = (i_me_range>>1) | 1;
CROSS( 3, range, range );
COST_MV_X4( -1,-2, 1,-2, -2,-1, 2,-1 );
COST_MV_X4( -2, 1, 2, 1, -1, 2, 1, 2 );
if( bcost == ucost2 )
break;
cross_start = range + 2;
}
}
/* adaptive search range */
if( i_mvc )
{
/* range multipliers based on casual inspection of some statistics of
* average distance between current predictor and final mv found by ESA.
* these have not been tuned much by actual encoding. */
static const uint8_t range_mul[4][4] =
{
{ 3, 3, 4, 4 },
{ 3, 4, 4, 4 },
{ 4, 4, 4, 5 },
{ 4, 4, 5, 6 },
};
int mvd;
int sad_ctx, mvd_ctx;
int denom = 1;
if( i_mvc == 1 )
{
if( i_pixel == PIXEL_16x16 )
/* mvc is probably the same as mvp, so the difference isn't meaningful.
* but prediction usually isn't too bad, so just use medium range */
mvd = 25;
else
mvd = abs( m->mvp[0] - mvc[0][0] )
+ abs( m->mvp[1] - mvc[0][1] );
}
else
{
/* calculate the degree of agreement between predictors. */
/* in 16x16, mvc includes all the neighbors used to make mvp,
* so don't count mvp separately. */
denom = i_mvc - 1;
mvd = 0;
if( i_pixel != PIXEL_16x16 )
{
mvd = abs( m->mvp[0] - mvc[0][0] )
+ abs( m->mvp[1] - mvc[0][1] );
denom++;
}
mvd += x264_predictor_difference( mvc, i_mvc );
}
sad_ctx = SAD_THRESH(1000) ? 0
: SAD_THRESH(2000) ? 1
: SAD_THRESH(4000) ? 2 : 3;
mvd_ctx = mvd < 10*denom ? 0
: mvd < 20*denom ? 1
: mvd < 40*denom ? 2 : 3;
i_me_range = i_me_range * range_mul[mvd_ctx][sad_ctx] >> 2;
}
/* FIXME if the above DIA2/OCT2/CROSS found a new mv, it has not updated omx/omy.
* we are still centered on the same place as the DIA2. is this desirable? */
CROSS( cross_start, i_me_range, i_me_range>>1 );
COST_MV_X4( -2,-2, -2,2, 2,-2, 2,2 );
/* hexagon grid */
omx = bmx; omy = bmy;
const uint16_t *p_cost_omvx = p_cost_mvx + omx*4;
const uint16_t *p_cost_omvy = p_cost_mvy + omy*4;
int i = 1;
do
{
static const int8_t hex4[16][2] = {
{ 0,-4}, { 0, 4}, {-2,-3}, { 2,-3},
{-4,-2}, { 4,-2}, {-4,-1}, { 4,-1},
{-4, 0}, { 4, 0}, {-4, 1}, { 4, 1},
{-4, 2}, { 4, 2}, {-2, 3}, { 2, 3},
};
if( 4*i > X264_MIN4( mv_x_max-omx, omx-mv_x_min,
mv_y_max-omy, omy-mv_y_min ) )
{
for( int j = 0; j < 16; j++ )
{
int mx = omx + hex4[j][0]*i;
int my = omy + hex4[j][1]*i;
if( CHECK_MVRANGE(mx, my) )
COST_MV( mx, my );
}
}
else
{
int dir = 0;
pixel *pix_base = p_fref_w + omx + (omy-4*i)*stride;
int dy = i*stride;
#define SADS(k,x0,y0,x1,y1,x2,y2,x3,y3)\
h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
pix_base x0*i+(y0-2*k+4)*dy,\
pix_base x1*i+(y1-2*k+4)*dy,\
pix_base x2*i+(y2-2*k+4)*dy,\
pix_base x3*i+(y3-2*k+4)*dy,\
stride, costs+4*k );\
pix_base += 2*dy;
#define ADD_MVCOST(k,x,y) costs[k] += p_cost_omvx[x*4*i] + p_cost_omvy[y*4*i]
#define MIN_MV(k,x,y) COPY2_IF_LT( bcost, costs[k], dir, x*16+(y&15) )
SADS( 0, +0,-4, +0,+4, -2,-3, +2,-3 );
SADS( 1, -4,-2, +4,-2, -4,-1, +4,-1 );
SADS( 2, -4,+0, +4,+0, -4,+1, +4,+1 );
SADS( 3, -4,+2, +4,+2, -2,+3, +2,+3 );
ADD_MVCOST( 0, 0,-4 );
ADD_MVCOST( 1, 0, 4 );
ADD_MVCOST( 2,-2,-3 );
ADD_MVCOST( 3, 2,-3 );
ADD_MVCOST( 4,-4,-2 );
ADD_MVCOST( 5, 4,-2 );
ADD_MVCOST( 6,-4,-1 );
ADD_MVCOST( 7, 4,-1 );
ADD_MVCOST( 8,-4, 0 );
ADD_MVCOST( 9, 4, 0 );
ADD_MVCOST( 10,-4, 1 );
ADD_MVCOST( 11, 4, 1 );
ADD_MVCOST( 12,-4, 2 );
ADD_MVCOST( 13, 4, 2 );
ADD_MVCOST( 14,-2, 3 );
ADD_MVCOST( 15, 2, 3 );
MIN_MV( 0, 0,-4 );
MIN_MV( 1, 0, 4 );
MIN_MV( 2,-2,-3 );
MIN_MV( 3, 2,-3 );
MIN_MV( 4,-4,-2 );
MIN_MV( 5, 4,-2 );
MIN_MV( 6,-4,-1 );
MIN_MV( 7, 4,-1 );
MIN_MV( 8,-4, 0 );
MIN_MV( 9, 4, 0 );
MIN_MV( 10,-4, 1 );
MIN_MV( 11, 4, 1 );
MIN_MV( 12,-4, 2 );
MIN_MV( 13, 4, 2 );
MIN_MV( 14,-2, 3 );
MIN_MV( 15, 2, 3 );
#undef SADS
#undef ADD_MVCOST
#undef MIN_MV
if( dir )
{
bmx = omx + i*(dir>>4);
bmy = omy + i*((int32_t)((uint32_t)dir<<28)>>28);
}
}
} while( ++i <= i_me_range>>2 );
if( bmy <= mv_y_max && bmy >= mv_y_min && bmx <= mv_x_max && bmx >= mv_x_min )
goto me_hex2;
break;
}
case X264_ME_ESA:
case X264_ME_TESA:
{
const int min_x = X264_MAX( bmx - i_me_range, mv_x_min );
const int min_y = X264_MAX( bmy - i_me_range, mv_y_min );
const int max_x = X264_MIN( bmx + i_me_range, mv_x_max );
const int max_y = X264_MIN( bmy + i_me_range, mv_y_max );
/* SEA is fastest in multiples of 4 */
const int width = (max_x - min_x + 3) & ~3;
#if 0
/* plain old exhaustive search */
for( int my = min_y; my <= max_y; my++ )
for( int mx = min_x; mx < min_x + width; mx++ )
COST_MV( mx, my );
#else
/* successive elimination by comparing DC before a full SAD,
* because sum(abs(diff)) >= abs(diff(sum)). */
uint16_t *sums_base = m->integral;
ALIGNED_ARRAY_16( int, enc_dc,[4] );
int sad_size = i_pixel <= PIXEL_8x8 ? PIXEL_8x8 : PIXEL_4x4;
int delta = x264_pixel_size[sad_size].w;
int16_t *xs = h->scratch_buffer;
int xn;
uint16_t *cost_fpel_mvx = h->cost_mv_fpel[h->mb.i_qp][-m->mvp[0]&3] + (-m->mvp[0]>>2);
h->pixf.sad_x4[sad_size]( (pixel*)x264_zero, p_fenc, p_fenc+delta,
p_fenc+delta*FENC_STRIDE, p_fenc+delta+delta*FENC_STRIDE,
FENC_STRIDE, enc_dc );
if( delta == 4 )
sums_base += stride * (h->fenc->i_lines[0] + PADV*2);
if( i_pixel == PIXEL_16x16 || i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
delta *= stride;
if( i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
enc_dc[1] = enc_dc[2];
if( h->mb.i_me_method == X264_ME_TESA )
{
// ADS threshold, then SAD threshold, then keep the best few SADs, then SATD
mvsad_t *mvsads = (mvsad_t *)(xs + ((width+31)&~31) + 4);
int nmvsad = 0, limit;
int sad_thresh = i_me_range <= 16 ? 10 : i_me_range <= 24 ? 11 : 12;
int bsad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+bmy*stride+bmx, stride )
+ BITS_MVD( bmx, bmy );
for( int my = min_y; my <= max_y; my++ )
{
int i;
int ycost = p_cost_mvy[my*4];
if( bsad <= ycost )
continue;
bsad -= ycost;
xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
cost_fpel_mvx+min_x, xs, width, bsad * 17 >> 4 );
for( i = 0; i < xn-2; i += 3 )
{
pixel *ref = p_fref_w+min_x+my*stride;
ALIGNED_ARRAY_16( int, sads,[4] ); /* padded to [4] for asm */
h->pixf.sad_x3[i_pixel]( p_fenc, ref+xs[i], ref+xs[i+1], ref+xs[i+2], stride, sads );
for( int j = 0; j < 3; j++ )
{
int sad = sads[j] + cost_fpel_mvx[xs[i+j]];
if( sad < bsad*sad_thresh>>3 )
{
COPY1_IF_LT( bsad, sad );
mvsads[nmvsad].sad = sad + ycost;
mvsads[nmvsad].mv[0] = min_x+xs[i+j];
mvsads[nmvsad].mv[1] = my;
nmvsad++;
}
}
}
for( ; i < xn; i++ )
{
int mx = min_x+xs[i];
int sad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+mx+my*stride, stride )
+ cost_fpel_mvx[xs[i]];
if( sad < bsad*sad_thresh>>3 )
{
COPY1_IF_LT( bsad, sad );
mvsads[nmvsad].sad = sad + ycost;
mvsads[nmvsad].mv[0] = mx;
mvsads[nmvsad].mv[1] = my;
nmvsad++;
}
}
bsad += ycost;
}
limit = i_me_range >> 1;
sad_thresh = bsad*sad_thresh>>3;
while( nmvsad > limit*2 && sad_thresh > bsad )
{
int i = 0;
// halve the range if the domain is too large... eh, close enough
sad_thresh = (sad_thresh + bsad) >> 1;
while( i < nmvsad && mvsads[i].sad <= sad_thresh )
i++;
for( int j = i; j < nmvsad; j++ )
{
uint32_t sad;
if( WORD_SIZE == 8 && sizeof(mvsad_t) == 8 )
{
uint64_t mvsad = M64( &mvsads[i] ) = M64( &mvsads[j] );
#if WORDS_BIGENDIAN
mvsad >>= 32;
#endif
sad = mvsad;
}
else
{
sad = mvsads[j].sad;
CP32( mvsads[i].mv, mvsads[j].mv );
mvsads[i].sad = sad;
}
i += (sad - (sad_thresh+1)) >> 31;
}
nmvsad = i;
}
while( nmvsad > limit )
{
int bi = 0;
for( int i = 1; i < nmvsad; i++ )
if( mvsads[i].sad > mvsads[bi].sad )
bi = i;
nmvsad--;
if( sizeof( mvsad_t ) == sizeof( uint64_t ) )
CP64( &mvsads[bi], &mvsads[nmvsad] );
else
mvsads[bi] = mvsads[nmvsad];
}
for( int i = 0; i < nmvsad; i++ )
COST_MV( mvsads[i].mv[0], mvsads[i].mv[1] );
}
else
{
// just ADS and SAD
for( int my = min_y; my <= max_y; my++ )
{
int i;
int ycost = p_cost_mvy[my*4];
if( bcost <= ycost )
continue;
bcost -= ycost;
xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
cost_fpel_mvx+min_x, xs, width, bcost );
for( i = 0; i < xn-2; i += 3 )
COST_MV_X3_ABS( min_x+xs[i],my, min_x+xs[i+1],my, min_x+xs[i+2],my );
bcost += ycost;
for( ; i < xn; i++ )
COST_MV( min_x+xs[i], my );
}
}
#endif
}
break;
}
/* -> qpel mv */
uint32_t bmv = pack16to32_mask(bmx,bmy);
uint32_t bmv_spel = SPELx2(bmv);
if( h->mb.i_subpel_refine < 3 )
{
m->cost_mv = p_cost_mvx[bmx*4] + p_cost_mvy[bmy*4];
m->cost = bcost;
/* compute the real cost */
if( bmv == pmv ) m->cost += m->cost_mv;
M32( m->mv ) = bmv_spel;
}
else
{
M32(m->mv) = bpred_cost < bcost ? bpred_mv : bmv_spel;
m->cost = X264_MIN( bpred_cost, bcost );
}
/* subpel refine */
if( h->mb.i_subpel_refine >= 2 )
{
int hpel = subpel_iterations[h->mb.i_subpel_refine][2];
int qpel = subpel_iterations[h->mb.i_subpel_refine][3];
refine_subpel( h, m, hpel, qpel, p_halfpel_thresh, 0 );
}
}
#undef COST_MV
void x264_me_refine_qpel( x264_t *h, x264_me_t *m )
{
int hpel = subpel_iterations[h->mb.i_subpel_refine][0];
int qpel = subpel_iterations[h->mb.i_subpel_refine][1];
if( m->i_pixel <= PIXEL_8x8 )
m->cost -= m->i_ref_cost;
refine_subpel( h, m, hpel, qpel, NULL, 1 );
}
void x264_me_refine_qpel_refdupe( x264_t *h, x264_me_t *m, int *p_halfpel_thresh )
{
refine_subpel( h, m, 0, X264_MIN( 2, subpel_iterations[h->mb.i_subpel_refine][3] ), p_halfpel_thresh, 0 );
}
#define COST_MV_SAD( mx, my ) \
{ \
intptr_t stride = 16; \
pixel *src = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
int cost = h->pixf.fpelcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
+ p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my ); \
}
#define COST_MV_SATD( mx, my, dir ) \
if( b_refine_qpel || (dir^1) != odir ) \
{ \
intptr_t stride = 16; \
pixel *src = h->mc.get_ref( pix, &stride, &m->p_fref[0], m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
int cost = h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
+ p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
if( b_chroma_me && cost < bcost ) \
{ \
if( CHROMA444 ) \
{ \
stride = 16; \
src = h->mc.get_ref( pix, &stride, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[1], FENC_STRIDE, src, stride ); \
if( cost < bcost ) \
{ \
stride = 16; \
src = h->mc.get_ref( pix, &stride, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[2], FENC_STRIDE, src, stride ); \
} \
} \
else \
{ \
h->mc.mc_chroma( pix, pix+8, 16, m->p_fref[4], m->i_stride[1], \
mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
if( m->weight[1].weightfn ) \
m->weight[1].weightfn[bw>>3]( pix, 16, pix, 16, &m->weight[1], bh>>chroma_v_shift ); \
cost += h->pixf.mbcmp[chromapix]( m->p_fenc[1], FENC_STRIDE, pix, 16 ); \
if( cost < bcost ) \
{ \
if( m->weight[2].weightfn ) \
m->weight[2].weightfn[bw>>3]( pix+8, 16, pix+8, 16, &m->weight[2], bh>>chroma_v_shift ); \
cost += h->pixf.mbcmp[chromapix]( m->p_fenc[2], FENC_STRIDE, pix+8, 16 ); \
} \
} \
} \
COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, bdir, dir ); \
}
static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel )
{
const int bw = x264_pixel_size[m->i_pixel].w;
const int bh = x264_pixel_size[m->i_pixel].h;
const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];
const int i_pixel = m->i_pixel;
const int b_chroma_me = h->mb.b_chroma_me && (i_pixel <= PIXEL_8x8 || CHROMA444);
int chromapix = h->luma2chroma_pixel[i_pixel];
int chroma_v_shift = CHROMA_V_SHIFT;
int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
ALIGNED_ARRAY_32( pixel, pix,[64*18] ); // really 17x17x2, but round up for alignment
ALIGNED_ARRAY_16( int, costs,[4] );
int bmx = m->mv[0];
int bmy = m->mv[1];
int bcost = m->cost;
int odir = -1, bdir;
/* halfpel diamond search */
if( hpel_iters )
{
/* try the subpel component of the predicted mv */
if( h->mb.i_subpel_refine < 3 )
{
int mx = x264_clip3( m->mvp[0], h->mb.mv_min_spel[0]+2, h->mb.mv_max_spel[0]-2 );
int my = x264_clip3( m->mvp[1], h->mb.mv_min_spel[1]+2, h->mb.mv_max_spel[1]-2 );
if( (mx-bmx)|(my-bmy) )
COST_MV_SAD( mx, my );
}
bcost <<= 6;
for( int i = hpel_iters; i > 0; i-- )
{
int omx = bmx, omy = bmy;
intptr_t stride = 64; // candidates are either all hpel or all qpel, so one stride is enough
pixel *src0, *src1, *src2, *src3;
src0 = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], omx, omy-2, bw, bh+1, &m->weight[0] );
src2 = h->mc.get_ref( pix+32, &stride, m->p_fref, m->i_stride[0], omx-2, omy, bw+4, bh, &m->weight[0] );
src1 = src0 + stride;
src3 = src2 + 1;
h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], src0, src1, src2, src3, stride, costs );
costs[0] += p_cost_mvx[omx ] + p_cost_mvy[omy-2];
costs[1] += p_cost_mvx[omx ] + p_cost_mvy[omy+2];
costs[2] += p_cost_mvx[omx-2] + p_cost_mvy[omy ];
costs[3] += p_cost_mvx[omx+2] + p_cost_mvy[omy ];
COPY1_IF_LT( bcost, (costs[0]<<6)+2 );
COPY1_IF_LT( bcost, (costs[1]<<6)+6 );
COPY1_IF_LT( bcost, (costs[2]<<6)+16 );
COPY1_IF_LT( bcost, (costs[3]<<6)+48 );
if( !(bcost&63) )
break;
bmx -= (int32_t)((uint32_t)bcost<<26)>>29;
bmy -= (int32_t)((uint32_t)bcost<<29)>>29;
bcost &= ~63;
}
bcost >>= 6;
}
if( !b_refine_qpel && (h->pixf.mbcmp_unaligned[0] != h->pixf.fpelcmp[0] || b_chroma_me) )
{
bcost = COST_MAX;
COST_MV_SATD( bmx, bmy, -1 );
}
/* early termination when examining multiple reference frames */
if( p_halfpel_thresh )
{
if( (bcost*7)>>3 > *p_halfpel_thresh )
{
m->cost = bcost;
m->mv[0] = bmx;
m->mv[1] = bmy;
// don't need cost_mv
return;
}
else if( bcost < *p_halfpel_thresh )
*p_halfpel_thresh = bcost;
}
/* quarterpel diamond search */
if( h->mb.i_subpel_refine != 1 )
{
bdir = -1;
for( int i = qpel_iters; i > 0; i-- )
{
if( bmy <= h->mb.mv_min_spel[1] || bmy >= h->mb.mv_max_spel[1] || bmx <= h->mb.mv_min_spel[0] || bmx >= h->mb.mv_max_spel[0] )
break;
odir = bdir;
int omx = bmx, omy = bmy;
COST_MV_SATD( omx, omy - 1, 0 );
COST_MV_SATD( omx, omy + 1, 1 );
COST_MV_SATD( omx - 1, omy, 2 );
COST_MV_SATD( omx + 1, omy, 3 );
if( (bmx == omx) & (bmy == omy) )
break;
}
}
/* Special simplified case for subme=1 */
else if( bmy > h->mb.mv_min_spel[1] && bmy < h->mb.mv_max_spel[1] && bmx > h->mb.mv_min_spel[0] && bmx < h->mb.mv_max_spel[0] )
{
int omx = bmx, omy = bmy;
/* We have to use mc_luma because all strides must be the same to use fpelcmp_x4 */
h->mc.mc_luma( pix , 64, m->p_fref, m->i_stride[0], omx, omy-1, bw, bh, &m->weight[0] );
h->mc.mc_luma( pix+16, 64, m->p_fref, m->i_stride[0], omx, omy+1, bw, bh, &m->weight[0] );
h->mc.mc_luma( pix+32, 64, m->p_fref, m->i_stride[0], omx-1, omy, bw, bh, &m->weight[0] );
h->mc.mc_luma( pix+48, 64, m->p_fref, m->i_stride[0], omx+1, omy, bw, bh, &m->weight[0] );
h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], pix, pix+16, pix+32, pix+48, 64, costs );
costs[0] += p_cost_mvx[omx ] + p_cost_mvy[omy-1];
costs[1] += p_cost_mvx[omx ] + p_cost_mvy[omy+1];
costs[2] += p_cost_mvx[omx-1] + p_cost_mvy[omy ];
costs[3] += p_cost_mvx[omx+1] + p_cost_mvy[omy ];
bcost <<= 4;
COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
bmx -= (int32_t)((uint32_t)bcost<<28)>>30;
bmy -= (int32_t)((uint32_t)bcost<<30)>>30;
bcost >>= 4;
}
m->cost = bcost;
m->mv[0] = bmx;
m->mv[1] = bmy;
m->cost_mv = p_cost_mvx[bmx] + p_cost_mvy[bmy];
}
#define BIME_CACHE( dx, dy, list )\
{\
x264_me_t *m = m##list;\
int i = 4 + 3*dx + dy;\
int mvx = bm##list##x+dx;\
int mvy = bm##list##y+dy;\
stride[0][list][i] = bw;\
src[0][list][i] = h->mc.get_ref( pixy_buf[list][i], &stride[0][list][i], &m->p_fref[0],\
m->i_stride[0], mvx, mvy, bw, bh, x264_weight_none );\
if( rd )\
{\
if( CHROMA444 )\
{\
stride[1][list][i] = bw;\
src[1][list][i] = h->mc.get_ref( pixu_buf[list][i], &stride[1][list][i], &m->p_fref[4],\
m->i_stride[1], mvx, mvy, bw, bh, x264_weight_none );\
stride[2][list][i] = bw;\
src[2][list][i] = h->mc.get_ref( pixv_buf[list][i], &stride[2][list][i], &m->p_fref[8],\
m->i_stride[2], mvx, mvy, bw, bh, x264_weight_none );\
}\
else if( CHROMA_FORMAT )\
h->mc.mc_chroma( pixu_buf[list][i], pixv_buf[list][i], 8, m->p_fref[4], m->i_stride[1],\
mvx, 2*(mvy+mv##list##y_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift );\
}\
}
#define SATD_THRESH(cost) (cost+(cost>>4))
/* Don't unroll the BIME_CACHE loop. I couldn't find any way to force this
* other than making its iteration count not a compile-time constant. */
#define x264_iter_kludge x264_template(iter_kludge)
int x264_iter_kludge = 0;
static ALWAYS_INLINE void me_refine_bidir( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2, int rd )
{
int x = i8&1;
int y = i8>>1;
int s8 = X264_SCAN8_0 + 2*x + 16*y;
int16_t *cache0_mv = h->mb.cache.mv[0][s8];
int16_t *cache1_mv = h->mb.cache.mv[1][s8];
const int i_pixel = m0->i_pixel;
const int bw = x264_pixel_size[i_pixel].w;
const int bh = x264_pixel_size[i_pixel].h;
ALIGNED_ARRAY_32( pixel, pixy_buf,[2],[9][16*16] );
ALIGNED_ARRAY_32( pixel, pixu_buf,[2],[9][16*16] );
ALIGNED_ARRAY_32( pixel, pixv_buf,[2],[9][16*16] );
pixel *src[3][2][9];
int chromapix = h->luma2chroma_pixel[i_pixel];
int chroma_v_shift = CHROMA_V_SHIFT;
int chroma_x = (8 >> CHROMA_H_SHIFT) * x;
int chroma_y = (8 >> chroma_v_shift) * y;
pixel *pix = &h->mb.pic.p_fdec[0][8*x + 8*y*FDEC_STRIDE];
pixel *pixu = CHROMA_FORMAT ? &h->mb.pic.p_fdec[1][chroma_x + chroma_y*FDEC_STRIDE] : NULL;
pixel *pixv = CHROMA_FORMAT ? &h->mb.pic.p_fdec[2][chroma_x + chroma_y*FDEC_STRIDE] : NULL;
int ref0 = h->mb.cache.ref[0][s8];
int ref1 = h->mb.cache.ref[1][s8];
const int mv0y_offset = chroma_v_shift & MB_INTERLACED & ref0 ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
const int mv1y_offset = chroma_v_shift & MB_INTERLACED & ref1 ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
intptr_t stride[3][2][9];
int bm0x = m0->mv[0];
int bm0y = m0->mv[1];
int bm1x = m1->mv[0];
int bm1y = m1->mv[1];
int bcost = COST_MAX;
int mc_list0 = 1, mc_list1 = 1;
uint64_t bcostrd = COST_MAX64;
uint16_t amvd;
/* each byte of visited represents 8 possible m1y positions, so a 4D array isn't needed */
ALIGNED_ARRAY_64( uint8_t, visited,[8],[8][8] );
/* all permutations of an offset in up to 2 of the dimensions */
ALIGNED_4( static const int8_t dia4d[33][4] ) =
{
{0,0,0,0},
{0,0,0,1}, {0,0,0,-1}, {0,0,1,0}, {0,0,-1,0},
{0,1,0,0}, {0,-1,0,0}, {1,0,0,0}, {-1,0,0,0},
{0,0,1,1}, {0,0,-1,-1},{0,1,1,0}, {0,-1,-1,0},
{1,1,0,0}, {-1,-1,0,0},{1,0,0,1}, {-1,0,0,-1},
{0,1,0,1}, {0,-1,0,-1},{1,0,1,0}, {-1,0,-1,0},
{0,0,-1,1},{0,0,1,-1}, {0,-1,1,0},{0,1,-1,0},
{-1,1,0,0},{1,-1,0,0}, {1,0,0,-1},{-1,0,0,1},
{0,-1,0,1},{0,1,0,-1}, {-1,0,1,0},{1,0,-1,0},
};
if( bm0y < h->mb.mv_min_spel[1] + 8 || bm1y < h->mb.mv_min_spel[1] + 8 ||
bm0y > h->mb.mv_max_spel[1] - 8 || bm1y > h->mb.mv_max_spel[1] - 8 ||
bm0x < h->mb.mv_min_spel[0] + 8 || bm1x < h->mb.mv_min_spel[0] + 8 ||
bm0x > h->mb.mv_max_spel[0] - 8 || bm1x > h->mb.mv_max_spel[0] - 8 )
return;
if( rd && m0->i_pixel != PIXEL_16x16 && i8 != 0 )
{
x264_mb_predict_mv( h, 0, i8<<2, bw>>2, m0->mvp );
x264_mb_predict_mv( h, 1, i8<<2, bw>>2, m1->mvp );
}
const uint16_t *p_cost_m0x = m0->p_cost_mv - m0->mvp[0];
const uint16_t *p_cost_m0y = m0->p_cost_mv - m0->mvp[1];
const uint16_t *p_cost_m1x = m1->p_cost_mv - m1->mvp[0];
const uint16_t *p_cost_m1y = m1->p_cost_mv - m1->mvp[1];
h->mc.memzero_aligned( visited, sizeof(uint8_t[8][8][8]) );
for( int pass = 0; pass < 8; pass++ )
{
int bestj = 0;
/* check all mv pairs that differ in at most 2 components from the current mvs. */
/* doesn't do chroma ME. this probably doesn't matter, as the gains
* from bidir ME are the same with and without chroma ME. */
if( mc_list0 )
for( int j = x264_iter_kludge; j < 9; j++ )
BIME_CACHE( square1[j][0], square1[j][1], 0 );
if( mc_list1 )
for( int j = x264_iter_kludge; j < 9; j++ )
BIME_CACHE( square1[j][0], square1[j][1], 1 );
for( int j = !!pass; j < 33; j++ )
{
int m0x = dia4d[j][0] + bm0x;
int m0y = dia4d[j][1] + bm0y;
int m1x = dia4d[j][2] + bm1x;
int m1y = dia4d[j][3] + bm1y;
if( !pass || !((visited[(m0x)&7][(m0y)&7][(m1x)&7] & (1<<((m1y)&7)))) )
{
int i0 = 4 + 3*dia4d[j][0] + dia4d[j][1];
int i1 = 4 + 3*dia4d[j][2] + dia4d[j][3];
visited[(m0x)&7][(m0y)&7][(m1x)&7] |= (1<<((m1y)&7));
h->mc.avg[i_pixel]( pix, FDEC_STRIDE, src[0][0][i0], stride[0][0][i0], src[0][1][i1], stride[0][1][i1], i_weight );
int cost = h->pixf.mbcmp[i_pixel]( m0->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE )
+ p_cost_m0x[m0x] + p_cost_m0y[m0y] + p_cost_m1x[m1x] + p_cost_m1y[m1y];
if( rd )
{
if( cost < SATD_THRESH(bcost) )
{
bcost = X264_MIN( cost, bcost );
M32( cache0_mv ) = pack16to32_mask(m0x,m0y);
M32( cache1_mv ) = pack16to32_mask(m1x,m1y);
if( CHROMA444 )
{
h->mc.avg[i_pixel]( pixu, FDEC_STRIDE, src[1][0][i0], stride[1][0][i0], src[1][1][i1], stride[1][1][i1], i_weight );
h->mc.avg[i_pixel]( pixv, FDEC_STRIDE, src[2][0][i0], stride[2][0][i0], src[2][1][i1], stride[2][1][i1], i_weight );
}
else if( CHROMA_FORMAT )
{
h->mc.avg[chromapix]( pixu, FDEC_STRIDE, pixu_buf[0][i0], 8, pixu_buf[1][i1], 8, i_weight );
h->mc.avg[chromapix]( pixv, FDEC_STRIDE, pixv_buf[0][i0], 8, pixv_buf[1][i1], 8, i_weight );
}
uint64_t costrd = x264_rd_cost_part( h, i_lambda2, i8*4, m0->i_pixel );
COPY2_IF_LT( bcostrd, costrd, bestj, j );
}
}
else
COPY2_IF_LT( bcost, cost, bestj, j );
}
}
if( !bestj )
break;
bm0x += dia4d[bestj][0];
bm0y += dia4d[bestj][1];
bm1x += dia4d[bestj][2];
bm1y += dia4d[bestj][3];
mc_list0 = M16( &dia4d[bestj][0] );
mc_list1 = M16( &dia4d[bestj][2] );
}
if( rd )
{
x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 0, pack16to32_mask(bm0x, bm0y) );
amvd = pack8to16( X264_MIN(abs(bm0x - m0->mvp[0]),33), X264_MIN(abs(bm0y - m0->mvp[1]),33) );
x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 0, amvd );
x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 1, pack16to32_mask(bm1x, bm1y) );
amvd = pack8to16( X264_MIN(abs(bm1x - m1->mvp[0]),33), X264_MIN(abs(bm1y - m1->mvp[1]),33) );
x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 1, amvd );
}
m0->mv[0] = bm0x;
m0->mv[1] = bm0y;
m1->mv[0] = bm1x;
m1->mv[1] = bm1y;
}
void x264_me_refine_bidir_satd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight )
{
me_refine_bidir( h, m0, m1, i_weight, 0, 0, 0 );
}
void x264_me_refine_bidir_rd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2 )
{
/* Motion compensation is done as part of bidir_rd; don't repeat
* it in encoding. */
h->mb.b_skip_mc = 1;
me_refine_bidir( h, m0, m1, i_weight, i8, i_lambda2, 1 );
h->mb.b_skip_mc = 0;
}
#undef COST_MV_SATD
#define COST_MV_SATD( mx, my, dst, avoid_mvp ) \
{ \
if( !avoid_mvp || !(mx == pmx && my == pmy) ) \
{ \
h->mc.mc_luma( pix, FDEC_STRIDE, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
dst = h->pixf.mbcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE ) \
+ p_cost_mvx[mx] + p_cost_mvy[my]; \
COPY1_IF_LT( bsatd, dst ); \
} \
else \
dst = COST_MAX; \
}
#define COST_MV_RD( mx, my, satd, do_dir, mdir ) \
{ \
if( satd <= SATD_THRESH(bsatd) ) \
{ \
uint64_t cost; \
M32( cache_mv ) = pack16to32_mask(mx,my); \
if( CHROMA444 ) \
{ \
h->mc.mc_luma( pixu, FDEC_STRIDE, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
h->mc.mc_luma( pixv, FDEC_STRIDE, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
} \
else if( CHROMA_FORMAT && m->i_pixel <= PIXEL_8x8 ) \
{ \
h->mc.mc_chroma( pixu, pixv, FDEC_STRIDE, m->p_fref[4], m->i_stride[1], \
mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
if( m->weight[1].weightfn ) \
m->weight[1].weightfn[bw>>3]( pixu, FDEC_STRIDE, pixu, FDEC_STRIDE, &m->weight[1], bh>>chroma_v_shift ); \
if( m->weight[2].weightfn ) \
m->weight[2].weightfn[bw>>3]( pixv, FDEC_STRIDE, pixv, FDEC_STRIDE, &m->weight[2], bh>>chroma_v_shift ); \
} \
cost = x264_rd_cost_part( h, i_lambda2, i4, m->i_pixel ); \
COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, dir, do_dir?mdir:dir ); \
} \
}
void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int i_list )
{
int16_t *cache_mv = h->mb.cache.mv[i_list][x264_scan8[i4]];
const uint16_t *p_cost_mvx, *p_cost_mvy;
const int bw = x264_pixel_size[m->i_pixel].w;
const int bh = x264_pixel_size[m->i_pixel].h;
const int i_pixel = m->i_pixel;
int chroma_v_shift = CHROMA_V_SHIFT;
int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
uint64_t bcost = COST_MAX64;
int bmx = m->mv[0];
int bmy = m->mv[1];
int omx, omy, pmx, pmy;
int satd, bsatd;
int dir = -2;
int i8 = i4>>2;
uint16_t amvd;
pixel *pix = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i4]];
pixel *pixu, *pixv;
if( CHROMA444 )
{
pixu = &h->mb.pic.p_fdec[1][block_idx_xy_fdec[i4]];
pixv = &h->mb.pic.p_fdec[2][block_idx_xy_fdec[i4]];
}
else if( CHROMA_FORMAT )
{
pixu = &h->mb.pic.p_fdec[1][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4];
pixv = &h->mb.pic.p_fdec[2][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4];
}
else
{
pixu = NULL;
pixv = NULL;
}
h->mb.b_skip_mc = 1;
if( m->i_pixel != PIXEL_16x16 && i4 != 0 )
x264_mb_predict_mv( h, i_list, i4, bw>>2, m->mvp );
pmx = m->mvp[0];
pmy = m->mvp[1];
p_cost_mvx = m->p_cost_mv - pmx;
p_cost_mvy = m->p_cost_mv - pmy;
COST_MV_SATD( bmx, bmy, bsatd, 0 );
if( m->i_pixel != PIXEL_16x16 )
COST_MV_RD( bmx, bmy, 0, 0, 0 )
else
bcost = m->cost;
/* check the predicted mv */
if( (bmx != pmx || bmy != pmy)
&& pmx >= h->mb.mv_min_spel[0] && pmx <= h->mb.mv_max_spel[0]
&& pmy >= h->mb.mv_min_spel[1] && pmy <= h->mb.mv_max_spel[1] )
{
COST_MV_SATD( pmx, pmy, satd, 0 );
COST_MV_RD ( pmx, pmy, satd, 0, 0 );
/* The hex motion search is guaranteed to not repeat the center candidate,
* so if pmv is chosen, set the "MV to avoid checking" to bmv instead. */
if( bmx == pmx && bmy == pmy )
{
pmx = m->mv[0];
pmy = m->mv[1];
}
}
if( bmy < h->mb.mv_min_spel[1] + 3 || bmy > h->mb.mv_max_spel[1] - 3 ||
bmx < h->mb.mv_min_spel[0] + 3 || bmx > h->mb.mv_max_spel[0] - 3 )
{
h->mb.b_skip_mc = 0;
return;
}
/* subpel hex search, same pattern as ME HEX. */
dir = -2;
omx = bmx;
omy = bmy;
for( int j = 0; j < 6; j++ )
{
COST_MV_SATD( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1 );
COST_MV_RD ( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1, j );
}
if( dir != -2 )
{
/* half hexagon, not overlapping the previous iteration */
for( int i = 1; i < 10; i++ )
{
const int odir = mod6m1[dir+1];
if( bmy < h->mb.mv_min_spel[1] + 3 ||
bmy > h->mb.mv_max_spel[1] - 3 )
break;
dir = -2;
omx = bmx;
omy = bmy;
for( int j = 0; j < 3; j++ )
{
COST_MV_SATD( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1 );
COST_MV_RD ( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1, odir-1+j );
}
if( dir == -2 )
break;
}
}
/* square refine, same pattern as ME HEX. */
omx = bmx;
omy = bmy;
for( int i = 0; i < 8; i++ )
{
COST_MV_SATD( omx + square1[i+1][0], omy + square1[i+1][1], satd, 1 );
COST_MV_RD ( omx + square1[i+1][0], omy + square1[i+1][1], satd, 0, 0 );
}
m->cost = bcost;
m->mv[0] = bmx;
m->mv[1] = bmy;
x264_macroblock_cache_mv ( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, pack16to32_mask(bmx, bmy) );
amvd = pack8to16( X264_MIN(abs(bmx - m->mvp[0]),66), X264_MIN(abs(bmy - m->mvp[1]),66) );
x264_macroblock_cache_mvd( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, amvd );
h->mb.b_skip_mc = 0;
}