2025-04-28 08:47:28 +08:00

1927 lines
80 KiB
C

/*****************************************************************************
* macroblock.c: macroblock common functions
*****************************************************************************
* Copyright (C) 2003-2025 x264 project
*
* Authors: Fiona Glaser <fiona@x264.com>
* Laurent Aimar <fenrir@via.ecp.fr>
* Loren Merritt <lorenm@u.washington.edu>
* Henrik Gramner <henrik@gramner.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#include "common.h"
#define MC_LUMA(list,p) \
h->mc.mc_luma( &h->mb.pic.p_fdec[p][4*y*FDEC_STRIDE+4*x], FDEC_STRIDE, \
&h->mb.pic.p_fref[list][i_ref][p*4], h->mb.pic.i_stride[p], \
mvx, mvy, 4*width, 4*height, \
list ? x264_weight_none : &h->sh.weight[i_ref][p] );
static NOINLINE void mb_mc_0xywh( x264_t *h, int x, int y, int width, int height )
{
int i8 = x264_scan8[0]+x+8*y;
int i_ref = h->mb.cache.ref[0][i8];
int mvx = x264_clip3( h->mb.cache.mv[0][i8][0], h->mb.mv_min[0], h->mb.mv_max[0] ) + 4*4*x;
int mvy = x264_clip3( h->mb.cache.mv[0][i8][1], h->mb.mv_min[1], h->mb.mv_max[1] ) + 4*4*y;
MC_LUMA( 0, 0 );
if( CHROMA444 )
{
MC_LUMA( 0, 1 );
MC_LUMA( 0, 2 );
}
else if( CHROMA_FORMAT )
{
int v_shift = CHROMA_V_SHIFT;
// Chroma in 4:2:0 is offset if MCing from a field of opposite parity
if( v_shift & MB_INTERLACED & i_ref )
mvy += (h->mb.i_mb_y & 1)*4 - 2;
int offset = (4*FDEC_STRIDE>>v_shift)*y + 2*x;
height = 4*height >> v_shift;
h->mc.mc_chroma( &h->mb.pic.p_fdec[1][offset],
&h->mb.pic.p_fdec[2][offset], FDEC_STRIDE,
h->mb.pic.p_fref[0][i_ref][4], h->mb.pic.i_stride[1],
mvx, 2*mvy>>v_shift, 2*width, height );
if( h->sh.weight[i_ref][1].weightfn )
h->sh.weight[i_ref][1].weightfn[width>>1]( &h->mb.pic.p_fdec[1][offset], FDEC_STRIDE,
&h->mb.pic.p_fdec[1][offset], FDEC_STRIDE,
&h->sh.weight[i_ref][1], height );
if( h->sh.weight[i_ref][2].weightfn )
h->sh.weight[i_ref][2].weightfn[width>>1]( &h->mb.pic.p_fdec[2][offset], FDEC_STRIDE,
&h->mb.pic.p_fdec[2][offset], FDEC_STRIDE,
&h->sh.weight[i_ref][2], height );
}
}
static NOINLINE void mb_mc_1xywh( x264_t *h, int x, int y, int width, int height )
{
int i8 = x264_scan8[0]+x+8*y;
int i_ref = h->mb.cache.ref[1][i8];
int mvx = x264_clip3( h->mb.cache.mv[1][i8][0], h->mb.mv_min[0], h->mb.mv_max[0] ) + 4*4*x;
int mvy = x264_clip3( h->mb.cache.mv[1][i8][1], h->mb.mv_min[1], h->mb.mv_max[1] ) + 4*4*y;
MC_LUMA( 1, 0 );
if( CHROMA444 )
{
MC_LUMA( 1, 1 );
MC_LUMA( 1, 2 );
}
else if( CHROMA_FORMAT )
{
int v_shift = CHROMA_V_SHIFT;
if( v_shift & MB_INTERLACED & i_ref )
mvy += (h->mb.i_mb_y & 1)*4 - 2;
int offset = (4*FDEC_STRIDE>>v_shift)*y + 2*x;
h->mc.mc_chroma( &h->mb.pic.p_fdec[1][offset],
&h->mb.pic.p_fdec[2][offset], FDEC_STRIDE,
h->mb.pic.p_fref[1][i_ref][4], h->mb.pic.i_stride[1],
mvx, 2*mvy>>v_shift, 2*width, 4*height>>v_shift );
}
}
#define MC_LUMA_BI(p) \
src0 = h->mc.get_ref( tmp0, &i_stride0, &h->mb.pic.p_fref[0][i_ref0][p*4], h->mb.pic.i_stride[p], \
mvx0, mvy0, 4*width, 4*height, x264_weight_none ); \
src1 = h->mc.get_ref( tmp1, &i_stride1, &h->mb.pic.p_fref[1][i_ref1][p*4], h->mb.pic.i_stride[p], \
mvx1, mvy1, 4*width, 4*height, x264_weight_none ); \
h->mc.avg[i_mode]( &h->mb.pic.p_fdec[p][4*y*FDEC_STRIDE+4*x], FDEC_STRIDE, \
src0, i_stride0, src1, i_stride1, weight );
static NOINLINE void mb_mc_01xywh( x264_t *h, int x, int y, int width, int height )
{
int i8 = x264_scan8[0]+x+8*y;
int i_ref0 = h->mb.cache.ref[0][i8];
int i_ref1 = h->mb.cache.ref[1][i8];
int weight = h->mb.bipred_weight[i_ref0][i_ref1];
int mvx0 = x264_clip3( h->mb.cache.mv[0][i8][0], h->mb.mv_min[0], h->mb.mv_max[0] ) + 4*4*x;
int mvx1 = x264_clip3( h->mb.cache.mv[1][i8][0], h->mb.mv_min[0], h->mb.mv_max[0] ) + 4*4*x;
int mvy0 = x264_clip3( h->mb.cache.mv[0][i8][1], h->mb.mv_min[1], h->mb.mv_max[1] ) + 4*4*y;
int mvy1 = x264_clip3( h->mb.cache.mv[1][i8][1], h->mb.mv_min[1], h->mb.mv_max[1] ) + 4*4*y;
int i_mode = x264_size2pixel[height][width];
intptr_t i_stride0 = 16, i_stride1 = 16;
ALIGNED_ARRAY_32( pixel, tmp0,[16*16] );
ALIGNED_ARRAY_32( pixel, tmp1,[16*16] );
pixel *src0, *src1;
MC_LUMA_BI( 0 );
if( CHROMA444 )
{
MC_LUMA_BI( 1 );
MC_LUMA_BI( 2 );
}
else if( CHROMA_FORMAT )
{
int v_shift = CHROMA_V_SHIFT;
if( v_shift & MB_INTERLACED & i_ref0 )
mvy0 += (h->mb.i_mb_y & 1)*4 - 2;
if( v_shift & MB_INTERLACED & i_ref1 )
mvy1 += (h->mb.i_mb_y & 1)*4 - 2;
h->mc.mc_chroma( tmp0, tmp0+8, 16, h->mb.pic.p_fref[0][i_ref0][4], h->mb.pic.i_stride[1],
mvx0, 2*mvy0>>v_shift, 2*width, 4*height>>v_shift );
h->mc.mc_chroma( tmp1, tmp1+8, 16, h->mb.pic.p_fref[1][i_ref1][4], h->mb.pic.i_stride[1],
mvx1, 2*mvy1>>v_shift, 2*width, 4*height>>v_shift );
int chromapix = h->luma2chroma_pixel[i_mode];
int offset = (4*FDEC_STRIDE>>v_shift)*y + 2*x;
h->mc.avg[chromapix]( &h->mb.pic.p_fdec[1][offset], FDEC_STRIDE, tmp0, 16, tmp1, 16, weight );
h->mc.avg[chromapix]( &h->mb.pic.p_fdec[2][offset], FDEC_STRIDE, tmp0+8, 16, tmp1+8, 16, weight );
}
}
#undef MC_LUMA
#undef MC_LUMA_BI
void x264_mb_mc_8x8( x264_t *h, int i8 )
{
int x = 2*(i8&1);
int y = 2*(i8>>1);
if( h->sh.i_type == SLICE_TYPE_P )
{
switch( h->mb.i_sub_partition[i8] )
{
case D_L0_8x8:
mb_mc_0xywh( h, x, y, 2, 2 );
break;
case D_L0_8x4:
mb_mc_0xywh( h, x, y+0, 2, 1 );
mb_mc_0xywh( h, x, y+1, 2, 1 );
break;
case D_L0_4x8:
mb_mc_0xywh( h, x+0, y, 1, 2 );
mb_mc_0xywh( h, x+1, y, 1, 2 );
break;
case D_L0_4x4:
mb_mc_0xywh( h, x+0, y+0, 1, 1 );
mb_mc_0xywh( h, x+1, y+0, 1, 1 );
mb_mc_0xywh( h, x+0, y+1, 1, 1 );
mb_mc_0xywh( h, x+1, y+1, 1, 1 );
break;
}
}
else
{
int scan8 = x264_scan8[0] + x + 8*y;
if( h->mb.cache.ref[0][scan8] >= 0 )
if( h->mb.cache.ref[1][scan8] >= 0 )
mb_mc_01xywh( h, x, y, 2, 2 );
else
mb_mc_0xywh( h, x, y, 2, 2 );
else
mb_mc_1xywh( h, x, y, 2, 2 );
}
}
void x264_mb_mc( x264_t *h )
{
if( h->mb.i_partition == D_8x8 )
{
for( int i = 0; i < 4; i++ )
x264_mb_mc_8x8( h, i );
}
else
{
int ref0a = h->mb.cache.ref[0][x264_scan8[ 0]];
int ref0b = h->mb.cache.ref[0][x264_scan8[12]];
int ref1a = h->mb.cache.ref[1][x264_scan8[ 0]];
int ref1b = h->mb.cache.ref[1][x264_scan8[12]];
if( h->mb.i_partition == D_16x16 )
{
if( ref0a >= 0 )
if( ref1a >= 0 ) mb_mc_01xywh( h, 0, 0, 4, 4 );
else mb_mc_0xywh ( h, 0, 0, 4, 4 );
else mb_mc_1xywh ( h, 0, 0, 4, 4 );
}
else if( h->mb.i_partition == D_16x8 )
{
if( ref0a >= 0 )
if( ref1a >= 0 ) mb_mc_01xywh( h, 0, 0, 4, 2 );
else mb_mc_0xywh ( h, 0, 0, 4, 2 );
else mb_mc_1xywh ( h, 0, 0, 4, 2 );
if( ref0b >= 0 )
if( ref1b >= 0 ) mb_mc_01xywh( h, 0, 2, 4, 2 );
else mb_mc_0xywh ( h, 0, 2, 4, 2 );
else mb_mc_1xywh ( h, 0, 2, 4, 2 );
}
else if( h->mb.i_partition == D_8x16 )
{
if( ref0a >= 0 )
if( ref1a >= 0 ) mb_mc_01xywh( h, 0, 0, 2, 4 );
else mb_mc_0xywh ( h, 0, 0, 2, 4 );
else mb_mc_1xywh ( h, 0, 0, 2, 4 );
if( ref0b >= 0 )
if( ref1b >= 0 ) mb_mc_01xywh( h, 2, 0, 2, 4 );
else mb_mc_0xywh ( h, 2, 0, 2, 4 );
else mb_mc_1xywh ( h, 2, 0, 2, 4 );
}
}
}
int x264_macroblock_cache_allocate( x264_t *h )
{
int i_mb_count = h->mb.i_mb_count;
h->mb.i_mb_stride = h->mb.i_mb_width;
h->mb.i_b8_stride = h->mb.i_mb_width * 2;
h->mb.i_b4_stride = h->mb.i_mb_width * 4;
h->mb.b_interlaced = PARAM_INTERLACED;
PREALLOC_INIT
PREALLOC( h->mb.qp, i_mb_count * sizeof(int8_t) );
PREALLOC( h->mb.cbp, i_mb_count * sizeof(int16_t) );
PREALLOC( h->mb.mb_transform_size, i_mb_count * sizeof(int8_t) );
PREALLOC( h->mb.slice_table, i_mb_count * sizeof(int32_t) );
/* 0 -> 3 top(4), 4 -> 6 : left(3) */
PREALLOC( h->mb.intra4x4_pred_mode, i_mb_count * 8 * sizeof(int8_t) );
/* all coeffs */
PREALLOC( h->mb.non_zero_count, i_mb_count * 48 * sizeof(uint8_t) );
if( h->param.b_cabac )
{
PREALLOC( h->mb.skipbp, i_mb_count * sizeof(int8_t) );
PREALLOC( h->mb.chroma_pred_mode, i_mb_count * sizeof(int8_t) );
PREALLOC( h->mb.mvd[0], i_mb_count * sizeof( **h->mb.mvd ) );
if( h->param.i_bframe )
PREALLOC( h->mb.mvd[1], i_mb_count * sizeof( **h->mb.mvd ) );
}
for( int i = 0; i < 2; i++ )
{
int i_refs = X264_MIN(X264_REF_MAX, (i ? 1 + !!h->param.i_bframe_pyramid : h->param.i_frame_reference) ) << PARAM_INTERLACED;
if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART )
i_refs = X264_MIN(X264_REF_MAX, i_refs + 1 + (BIT_DEPTH == 8)); //smart weights add two duplicate frames, one in >8-bit
for( int j = !i; j < i_refs; j++ )
PREALLOC( h->mb.mvr[i][j], 2 * (i_mb_count + 1) * sizeof(int16_t) );
}
if( h->param.analyse.i_weighted_pred )
{
int i_padv = PADV << PARAM_INTERLACED;
int luma_plane_size = 0;
int numweightbuf;
if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_FAKE )
{
// only need buffer for lookahead
if( !h->param.i_sync_lookahead || h == h->thread[h->param.i_threads] )
{
// Fake analysis only works on lowres
luma_plane_size = h->fdec->i_stride_lowres * (h->mb.i_mb_height*8+2*i_padv);
// Only need 1 buffer for analysis
numweightbuf = 1;
}
else
numweightbuf = 0;
}
else
{
/* Both ref and fenc is stored for 4:2:0 and 4:2:2 which means that 4:2:0 and 4:4:4
* needs the same amount of space and 4:2:2 needs twice that much */
luma_plane_size = h->fdec->i_stride[0] * (h->mb.i_mb_height*(16<<(CHROMA_FORMAT==CHROMA_422))+2*i_padv);
if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART )
//smart can weight one ref and one offset -1 in 8-bit
numweightbuf = 1 + (BIT_DEPTH == 8);
else
//simple only has one weighted ref
numweightbuf = 1;
}
for( int i = 0; i < numweightbuf; i++ )
PREALLOC( h->mb.p_weight_buf[i], luma_plane_size * SIZEOF_PIXEL );
}
PREALLOC_END( h->mb.base );
memset( h->mb.slice_table, -1, i_mb_count * sizeof(int32_t) );
for( int i = 0; i < 2; i++ )
{
int i_refs = X264_MIN(X264_REF_MAX, (i ? 1 + !!h->param.i_bframe_pyramid : h->param.i_frame_reference) ) << PARAM_INTERLACED;
if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART )
i_refs = X264_MIN(X264_REF_MAX, i_refs + 1 + (BIT_DEPTH == 8)); //smart weights add two duplicate frames, one in >8-bit
for( int j = !i; j < i_refs; j++ )
{
M32( h->mb.mvr[i][j][0] ) = 0;
h->mb.mvr[i][j]++;
}
}
return 0;
fail:
return -1;
}
void x264_macroblock_cache_free( x264_t *h )
{
x264_free( h->mb.base );
}
int x264_macroblock_thread_allocate( x264_t *h, int b_lookahead )
{
if( !b_lookahead )
{
for( int i = 0; i < (PARAM_INTERLACED ? 5 : 2); i++ )
for( int j = 0; j < (CHROMA444 ? 3 : 2); j++ )
{
CHECKED_MALLOC( h->intra_border_backup[i][j], (h->sps->i_mb_width*16+32) * SIZEOF_PIXEL );
h->intra_border_backup[i][j] += 16;
}
for( int i = 0; i <= PARAM_INTERLACED; i++ )
{
if( h->param.b_sliced_threads )
{
/* Only allocate the first one, and allocate it for the whole frame, because we
* won't be deblocking until after the frame is fully encoded. */
if( h == h->thread[0] && !i )
CHECKED_MALLOC( h->deblock_strength[0], sizeof(**h->deblock_strength) * h->mb.i_mb_count );
else
h->deblock_strength[i] = h->thread[0]->deblock_strength[0];
}
else
CHECKED_MALLOC( h->deblock_strength[i], sizeof(**h->deblock_strength) * h->mb.i_mb_width );
h->deblock_strength[1] = h->deblock_strength[i];
}
}
/* Allocate scratch buffer */
int scratch_size = 0;
if( !b_lookahead )
{
int buf_hpel = (h->thread[0]->fdec->i_width[0]+48+32) * sizeof(int16_t);
int buf_ssim = h->param.analyse.b_ssim * 8 * (h->param.i_width/4+3) * sizeof(int);
int me_range = X264_MIN(h->param.analyse.i_me_range, h->param.analyse.i_mv_range);
int buf_tesa = (h->param.analyse.i_me_method >= X264_ME_ESA) *
((me_range*2+24) * sizeof(int16_t) + (me_range+4) * (me_range+1) * 4 * sizeof(mvsad_t));
scratch_size = X264_MAX3( buf_hpel, buf_ssim, buf_tesa );
}
int buf_mbtree = h->param.rc.b_mb_tree * ALIGN( h->mb.i_mb_width * sizeof(int16_t), NATIVE_ALIGN );
scratch_size = X264_MAX( scratch_size, buf_mbtree );
if( scratch_size )
CHECKED_MALLOC( h->scratch_buffer, scratch_size );
else
h->scratch_buffer = NULL;
int buf_lookahead_threads = (h->mb.i_mb_height + (4 + 32) * h->param.i_lookahead_threads) * sizeof(int) * 2;
int buf_mbtree2 = buf_mbtree * 12; /* size of the internal propagate_list asm buffer */
scratch_size = X264_MAX( buf_lookahead_threads, buf_mbtree2 );
CHECKED_MALLOC( h->scratch_buffer2, scratch_size );
return 0;
fail:
return -1;
}
void x264_macroblock_thread_free( x264_t *h, int b_lookahead )
{
if( !b_lookahead )
{
for( int i = 0; i <= PARAM_INTERLACED; i++ )
if( !h->param.b_sliced_threads || (h == h->thread[0] && !i) )
x264_free( h->deblock_strength[i] );
for( int i = 0; i < (PARAM_INTERLACED ? 5 : 2); i++ )
for( int j = 0; j < (CHROMA444 ? 3 : 2); j++ )
x264_free( h->intra_border_backup[i][j] - 16 );
}
x264_free( h->scratch_buffer );
x264_free( h->scratch_buffer2 );
}
void x264_macroblock_slice_init( x264_t *h )
{
h->mb.mv[0] = h->fdec->mv[0];
h->mb.mv[1] = h->fdec->mv[1];
h->mb.mvr[0][0] = h->fdec->mv16x16;
h->mb.ref[0] = h->fdec->ref[0];
h->mb.ref[1] = h->fdec->ref[1];
h->mb.type = h->fdec->mb_type;
h->mb.partition = h->fdec->mb_partition;
h->mb.field = h->fdec->field;
h->fdec->i_ref[0] = h->i_ref[0];
h->fdec->i_ref[1] = h->i_ref[1];
for( int i = 0; i < h->i_ref[0]; i++ )
h->fdec->ref_poc[0][i] = h->fref[0][i]->i_poc;
if( h->sh.i_type == SLICE_TYPE_B )
{
for( int i = 0; i < h->i_ref[1]; i++ )
h->fdec->ref_poc[1][i] = h->fref[1][i]->i_poc;
map_col_to_list0(-1) = -1;
map_col_to_list0(-2) = -2;
for( int i = 0; i < h->fref[1][0]->i_ref[0]; i++ )
{
int poc = h->fref[1][0]->ref_poc[0][i];
map_col_to_list0(i) = -2;
for( int j = 0; j < h->i_ref[0]; j++ )
if( h->fref[0][j]->i_poc == poc )
{
map_col_to_list0(i) = j;
break;
}
}
}
else if( h->sh.i_type == SLICE_TYPE_P )
{
if( h->sh.i_disable_deblocking_filter_idc != 1 && h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART )
{
deblock_ref_table(-2) = -2;
deblock_ref_table(-1) = -1;
for( int i = 0; i < h->i_ref[0] << SLICE_MBAFF; i++ )
{
/* Mask off high bits to avoid frame num collisions with -1/-2.
* In current x264 frame num values don't cover a range of more
* than 32, so 6 bits is enough for uniqueness. */
if( !MB_INTERLACED )
deblock_ref_table(i) = h->fref[0][i]->i_frame_num&63;
else
deblock_ref_table(i) = ((h->fref[0][i>>1]->i_frame_num&63)<<1) + (i&1);
}
}
}
/* init with not available (for top right idx=7,15) */
memset( h->mb.cache.ref, -2, sizeof( h->mb.cache.ref ) );
if( h->i_ref[0] > 0 )
for( int field = 0; field <= SLICE_MBAFF; field++ )
{
int curpoc = h->fdec->i_poc + h->fdec->i_delta_poc[field];
int refpoc = h->fref[0][0]->i_poc + h->fref[0][0]->i_delta_poc[field];
int delta = curpoc - refpoc;
h->fdec->inv_ref_poc[field] = (256 + delta/2) / delta;
}
h->mb.i_neighbour4[6] =
h->mb.i_neighbour4[9] =
h->mb.i_neighbour4[12] =
h->mb.i_neighbour4[14] = MB_LEFT|MB_TOP|MB_TOPLEFT|MB_TOPRIGHT;
h->mb.i_neighbour4[3] =
h->mb.i_neighbour4[7] =
h->mb.i_neighbour4[11] =
h->mb.i_neighbour4[13] =
h->mb.i_neighbour4[15] =
h->mb.i_neighbour8[3] = MB_LEFT|MB_TOP|MB_TOPLEFT;
}
void x264_macroblock_thread_init( x264_t *h )
{
h->mb.i_me_method = h->param.analyse.i_me_method;
h->mb.i_subpel_refine = h->param.analyse.i_subpel_refine;
if( h->sh.i_type == SLICE_TYPE_B && (h->mb.i_subpel_refine == 6 || h->mb.i_subpel_refine == 8) )
h->mb.i_subpel_refine--;
h->mb.b_chroma_me = h->param.analyse.b_chroma_me &&
((h->sh.i_type == SLICE_TYPE_P && h->mb.i_subpel_refine >= 5) ||
(h->sh.i_type == SLICE_TYPE_B && h->mb.i_subpel_refine >= 9));
h->mb.b_dct_decimate = h->sh.i_type == SLICE_TYPE_B ||
(h->param.analyse.b_dct_decimate && h->sh.i_type != SLICE_TYPE_I);
h->mb.i_mb_prev_xy = -1;
/* 4:2:0 4:2:2 4:4:4
* fdec fenc fdec fenc fdec fenc
* y y y y y y y Y Y Y Y y y y y y y y Y Y Y Y y y y y y y y Y Y Y Y
* y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y
* y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y
* y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y
* y Y Y Y Y U U V V y Y Y Y Y U U V V y Y Y Y Y U U U U
* u u u v v v U U V V u u u v v v U U V V u u u u u u u U U U U
* u U U v V V u U U v V V U U V V u U U U U U U U U
* u U U v V V u U U v V V U U V V u U U U U U U U U
* u U U v V V u U U U U V V V V
* u U U v V V u U U U U V V V V
* v v v v v v v V V V V
* v V V V V V V V V
* v V V V V
* v V V V V
* v V V V V
*/
h->mb.pic.p_fenc[0] = h->mb.pic.fenc_buf;
h->mb.pic.p_fdec[0] = h->mb.pic.fdec_buf + 2*FDEC_STRIDE;
if( CHROMA_FORMAT )
{
h->mb.pic.p_fenc[1] = h->mb.pic.fenc_buf + 16*FENC_STRIDE;
h->mb.pic.p_fdec[1] = h->mb.pic.fdec_buf + 20*FDEC_STRIDE;
if( CHROMA444 )
{
h->mb.pic.p_fenc[2] = h->mb.pic.fenc_buf + 32*FENC_STRIDE;
h->mb.pic.p_fdec[2] = h->mb.pic.fdec_buf + 38*FDEC_STRIDE;
}
else
{
h->mb.pic.p_fenc[2] = h->mb.pic.fenc_buf + 16*FENC_STRIDE + 8;
h->mb.pic.p_fdec[2] = h->mb.pic.fdec_buf + 20*FDEC_STRIDE + 16;
}
}
}
void x264_prefetch_fenc( x264_t *h, x264_frame_t *fenc, int i_mb_x, int i_mb_y )
{
int stride_y = fenc->i_stride[0];
int stride_uv = fenc->i_stride[1];
int off_y = 16 * i_mb_x + 16 * i_mb_y * stride_y;
int off_uv = 16 * i_mb_x + (16 * i_mb_y * stride_uv >> CHROMA_V_SHIFT);
h->mc.prefetch_fenc( fenc->plane[0]+off_y, stride_y,
fenc->plane[1] != NULL ? fenc->plane[1]+off_uv : NULL, stride_uv, i_mb_x );
}
NOINLINE void x264_copy_column8( pixel *dst, pixel *src )
{
// input pointers are offset by 4 rows because that's faster (smaller instruction size on x86)
for( int i = -4; i < 4; i++ )
dst[i*FDEC_STRIDE] = src[i*FDEC_STRIDE];
}
static ALWAYS_INLINE void macroblock_load_pic_pointers( x264_t *h, int mb_x, int mb_y, int i, int b_chroma, int b_mbaff )
{
int mb_interlaced = b_mbaff && MB_INTERLACED;
int height = b_chroma ? 16 >> CHROMA_V_SHIFT : 16;
int i_stride = h->fdec->i_stride[i];
int i_stride2 = i_stride << mb_interlaced;
int i_pix_offset = mb_interlaced
? 16 * mb_x + height * (mb_y&~1) * i_stride + (mb_y&1) * i_stride
: 16 * mb_x + height * mb_y * i_stride;
pixel *plane_fdec = &h->fdec->plane[i][i_pix_offset];
int fdec_idx = b_mbaff ? (mb_interlaced ? (3 + (mb_y&1)) : (mb_y&1) ? 2 : 4) : !(mb_y&1);
pixel *intra_fdec = &h->intra_border_backup[fdec_idx][i][mb_x*16];
int ref_pix_offset[2] = { i_pix_offset, i_pix_offset };
/* ref_pix_offset[0] references the current field and [1] the opposite field. */
if( mb_interlaced )
ref_pix_offset[1] += (1-2*(mb_y&1)) * i_stride;
h->mb.pic.i_stride[i] = i_stride2;
h->mb.pic.p_fenc_plane[i] = &h->fenc->plane[i][i_pix_offset];
if( b_chroma )
{
h->mc.load_deinterleave_chroma_fenc( h->mb.pic.p_fenc[1], h->mb.pic.p_fenc_plane[1], i_stride2, height );
memcpy( h->mb.pic.p_fdec[1]-FDEC_STRIDE, intra_fdec, 8*SIZEOF_PIXEL );
memcpy( h->mb.pic.p_fdec[2]-FDEC_STRIDE, intra_fdec+8, 8*SIZEOF_PIXEL );
h->mb.pic.p_fdec[1][-FDEC_STRIDE-1] = intra_fdec[-1-8];
h->mb.pic.p_fdec[2][-FDEC_STRIDE-1] = intra_fdec[-1];
}
else
{
h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fenc[i], FENC_STRIDE, h->mb.pic.p_fenc_plane[i], i_stride2, 16 );
memcpy( h->mb.pic.p_fdec[i]-FDEC_STRIDE, intra_fdec, 24*SIZEOF_PIXEL );
h->mb.pic.p_fdec[i][-FDEC_STRIDE-1] = intra_fdec[-1];
}
if( b_mbaff || h->mb.b_reencode_mb )
{
for( int j = 0; j < height; j++ )
if( b_chroma )
{
h->mb.pic.p_fdec[1][-1+j*FDEC_STRIDE] = plane_fdec[-2+j*i_stride2];
h->mb.pic.p_fdec[2][-1+j*FDEC_STRIDE] = plane_fdec[-1+j*i_stride2];
}
else
h->mb.pic.p_fdec[i][-1+j*FDEC_STRIDE] = plane_fdec[-1+j*i_stride2];
}
pixel *plane_src, **filtered_src;
for( int j = 0; j < h->mb.pic.i_fref[0]; j++ )
{
// Interpolate between pixels in same field.
if( mb_interlaced )
{
plane_src = h->fref[0][j>>1]->plane_fld[i];
filtered_src = h->fref[0][j>>1]->filtered_fld[i];
}
else
{
plane_src = h->fref[0][j]->plane[i];
filtered_src = h->fref[0][j]->filtered[i];
}
h->mb.pic.p_fref[0][j][i*4] = plane_src + ref_pix_offset[j&1];
if( !b_chroma )
{
if( h->param.analyse.i_subpel_refine )
for( int k = 1; k < 4; k++ )
h->mb.pic.p_fref[0][j][i*4+k] = filtered_src[k] + ref_pix_offset[j&1];
if( !i )
{
if( h->sh.weight[j][0].weightfn )
h->mb.pic.p_fref_w[j] = &h->fenc->weighted[j >> mb_interlaced][ref_pix_offset[j&1]];
else
h->mb.pic.p_fref_w[j] = h->mb.pic.p_fref[0][j][0];
}
}
}
if( h->sh.i_type == SLICE_TYPE_B )
for( int j = 0; j < h->mb.pic.i_fref[1]; j++ )
{
if( mb_interlaced )
{
plane_src = h->fref[1][j>>1]->plane_fld[i];
filtered_src = h->fref[1][j>>1]->filtered_fld[i];
}
else
{
plane_src = h->fref[1][j]->plane[i];
filtered_src = h->fref[1][j]->filtered[i];
}
h->mb.pic.p_fref[1][j][i*4] = plane_src + ref_pix_offset[j&1];
if( !b_chroma && h->param.analyse.i_subpel_refine )
for( int k = 1; k < 4; k++ )
h->mb.pic.p_fref[1][j][i*4+k] = filtered_src[k] + ref_pix_offset[j&1];
}
}
static const x264_left_table_t left_indices[4] =
{
/* Current is progressive */
{{ 4, 4, 5, 5}, { 3, 3, 7, 7}, {16+1, 16+1, 32+1, 32+1}, {0, 0, 1, 1}, {0, 0, 0, 0}},
{{ 6, 6, 3, 3}, {11, 11, 15, 15}, {16+5, 16+5, 32+5, 32+5}, {2, 2, 3, 3}, {1, 1, 1, 1}},
/* Current is interlaced */
{{ 4, 6, 4, 6}, { 3, 11, 3, 11}, {16+1, 16+1, 32+1, 32+1}, {0, 2, 0, 2}, {0, 1, 0, 1}},
/* Both same */
{{ 4, 5, 6, 3}, { 3, 7, 11, 15}, {16+1, 16+5, 32+1, 32+5}, {0, 1, 2, 3}, {0, 0, 1, 1}}
};
static ALWAYS_INLINE void macroblock_cache_load_neighbours( x264_t *h, int mb_x, int mb_y, int b_interlaced )
{
const int mb_interlaced = b_interlaced && MB_INTERLACED;
int top_y = mb_y - (1 << mb_interlaced);
int top = top_y * h->mb.i_mb_stride + mb_x;
h->mb.i_mb_x = mb_x;
h->mb.i_mb_y = mb_y;
h->mb.i_mb_xy = mb_y * h->mb.i_mb_stride + mb_x;
h->mb.i_b8_xy = 2*(mb_y * h->mb.i_b8_stride + mb_x);
h->mb.i_b4_xy = 4*(mb_y * h->mb.i_b4_stride + mb_x);
h->mb.left_b8[0] =
h->mb.left_b8[1] = -1;
h->mb.left_b4[0] =
h->mb.left_b4[1] = -1;
h->mb.i_neighbour = 0;
h->mb.i_neighbour_intra = 0;
h->mb.i_neighbour_frame = 0;
h->mb.i_mb_top_xy = -1;
h->mb.i_mb_top_y = -1;
h->mb.i_mb_left_xy[0] = h->mb.i_mb_left_xy[1] = -1;
h->mb.i_mb_topleft_xy = -1;
h->mb.i_mb_topright_xy = -1;
h->mb.i_mb_type_top = -1;
h->mb.i_mb_type_left[0] = h->mb.i_mb_type_left[1] = -1;
h->mb.i_mb_type_topleft = -1;
h->mb.i_mb_type_topright = -1;
h->mb.left_index_table = &left_indices[3];
h->mb.topleft_partition = 0;
int topleft_y = top_y;
int topright_y = top_y;
int left[2];
left[0] = left[1] = h->mb.i_mb_xy - 1;
h->mb.left_b8[0] = h->mb.left_b8[1] = h->mb.i_b8_xy - 2;
h->mb.left_b4[0] = h->mb.left_b4[1] = h->mb.i_b4_xy - 4;
if( b_interlaced )
{
h->mb.i_mb_top_mbpair_xy = h->mb.i_mb_xy - 2*h->mb.i_mb_stride;
h->mb.i_mb_topleft_y = -1;
h->mb.i_mb_topright_y = -1;
if( mb_y&1 )
{
if( mb_x && mb_interlaced != h->mb.field[h->mb.i_mb_xy-1] )
{
left[0] = left[1] = h->mb.i_mb_xy - 1 - h->mb.i_mb_stride;
h->mb.left_b8[0] = h->mb.left_b8[1] = h->mb.i_b8_xy - 2 - 2*h->mb.i_b8_stride;
h->mb.left_b4[0] = h->mb.left_b4[1] = h->mb.i_b4_xy - 4 - 4*h->mb.i_b4_stride;
if( mb_interlaced )
{
h->mb.left_index_table = &left_indices[2];
left[1] += h->mb.i_mb_stride;
h->mb.left_b8[1] += 2*h->mb.i_b8_stride;
h->mb.left_b4[1] += 4*h->mb.i_b4_stride;
}
else
{
h->mb.left_index_table = &left_indices[1];
topleft_y++;
h->mb.topleft_partition = 1;
}
}
if( !mb_interlaced )
topright_y = -1;
}
else
{
if( mb_interlaced && top >= 0 )
{
if( !h->mb.field[top] )
{
top += h->mb.i_mb_stride;
top_y++;
}
if( mb_x )
topleft_y += !h->mb.field[h->mb.i_mb_stride*topleft_y + mb_x - 1];
if( mb_x < h->mb.i_mb_width-1 )
topright_y += !h->mb.field[h->mb.i_mb_stride*topright_y + mb_x + 1];
}
if( mb_x && mb_interlaced != h->mb.field[h->mb.i_mb_xy-1] )
{
if( mb_interlaced )
{
h->mb.left_index_table = &left_indices[2];
left[1] += h->mb.i_mb_stride;
h->mb.left_b8[1] += 2*h->mb.i_b8_stride;
h->mb.left_b4[1] += 4*h->mb.i_b4_stride;
}
else
h->mb.left_index_table = &left_indices[0];
}
}
}
if( mb_x > 0 )
{
h->mb.i_neighbour_frame |= MB_LEFT;
h->mb.i_mb_left_xy[0] = left[0];
h->mb.i_mb_left_xy[1] = left[1];
h->mb.i_mb_type_left[0] = h->mb.type[h->mb.i_mb_left_xy[0]];
h->mb.i_mb_type_left[1] = h->mb.type[h->mb.i_mb_left_xy[1]];
if( h->mb.slice_table[left[0]] == h->sh.i_first_mb )
{
h->mb.i_neighbour |= MB_LEFT;
// FIXME: We don't currently support constrained intra + mbaff.
if( !h->param.b_constrained_intra || IS_INTRA( h->mb.i_mb_type_left[0] ) )
h->mb.i_neighbour_intra |= MB_LEFT;
}
}
/* We can't predict from the previous threadslice since it hasn't been encoded yet. */
if( (h->i_threadslice_start >> mb_interlaced) != (mb_y >> mb_interlaced) )
{
if( top >= 0 )
{
h->mb.i_neighbour_frame |= MB_TOP;
h->mb.i_mb_top_xy = top;
h->mb.i_mb_top_y = top_y;
h->mb.i_mb_type_top = h->mb.type[h->mb.i_mb_top_xy];
if( h->mb.slice_table[top] == h->sh.i_first_mb )
{
h->mb.i_neighbour |= MB_TOP;
if( !h->param.b_constrained_intra || IS_INTRA( h->mb.i_mb_type_top ) )
h->mb.i_neighbour_intra |= MB_TOP;
/* We only need to prefetch the top blocks because the left was just written
* to as part of the previous cache_save. Since most target CPUs use write-allocate
* caches, left blocks are near-guaranteed to be in L1 cache. Top--not so much. */
x264_prefetch( &h->mb.cbp[top] );
x264_prefetch( h->mb.intra4x4_pred_mode[top] );
x264_prefetch( &h->mb.non_zero_count[top][12] );
x264_prefetch( &h->mb.mb_transform_size[top] );
if( h->param.b_cabac )
x264_prefetch( &h->mb.skipbp[top] );
}
}
if( mb_x > 0 && topleft_y >= 0 )
{
h->mb.i_neighbour_frame |= MB_TOPLEFT;
h->mb.i_mb_topleft_xy = h->mb.i_mb_stride*topleft_y + mb_x - 1;
h->mb.i_mb_topleft_y = topleft_y;
h->mb.i_mb_type_topleft = h->mb.type[h->mb.i_mb_topleft_xy];
if( h->mb.slice_table[h->mb.i_mb_topleft_xy] == h->sh.i_first_mb )
{
h->mb.i_neighbour |= MB_TOPLEFT;
if( !h->param.b_constrained_intra || IS_INTRA( h->mb.i_mb_type_topleft ) )
h->mb.i_neighbour_intra |= MB_TOPLEFT;
}
}
if( mb_x < h->mb.i_mb_width - 1 && topright_y >= 0 )
{
h->mb.i_neighbour_frame |= MB_TOPRIGHT;
h->mb.i_mb_topright_xy = h->mb.i_mb_stride*topright_y + mb_x + 1;
h->mb.i_mb_topright_y = topright_y;
h->mb.i_mb_type_topright = h->mb.type[h->mb.i_mb_topright_xy];
if( h->mb.slice_table[h->mb.i_mb_topright_xy] == h->sh.i_first_mb )
{
h->mb.i_neighbour |= MB_TOPRIGHT;
if( !h->param.b_constrained_intra || IS_INTRA( h->mb.i_mb_type_topright ) )
h->mb.i_neighbour_intra |= MB_TOPRIGHT;
}
}
}
}
#define LTOP 0
#if HAVE_INTERLACED
# define LBOT 1
#else
# define LBOT 0
#endif
static ALWAYS_INLINE void macroblock_cache_load( x264_t *h, int mb_x, int mb_y, int b_mbaff )
{
macroblock_cache_load_neighbours( h, mb_x, mb_y, b_mbaff );
int *left = h->mb.i_mb_left_xy;
int top = h->mb.i_mb_top_xy;
int top_y = h->mb.i_mb_top_y;
int s8x8 = h->mb.i_b8_stride;
int s4x4 = h->mb.i_b4_stride;
int top_8x8 = (2*top_y+1) * s8x8 + 2*mb_x;
int top_4x4 = (4*top_y+3) * s4x4 + 4*mb_x;
int lists = (1 << h->sh.i_type) & 3;
/* GCC pessimizes direct loads from heap-allocated arrays due to aliasing. */
/* By only dereferencing them once, we avoid this issue. */
int8_t (*i4x4)[8] = h->mb.intra4x4_pred_mode;
uint8_t (*nnz)[48] = h->mb.non_zero_count;
int16_t *cbp = h->mb.cbp;
const x264_left_table_t *left_index_table = h->mb.left_index_table;
h->mb.cache.deblock_strength = h->deblock_strength[mb_y&1][h->param.b_sliced_threads?h->mb.i_mb_xy:mb_x];
/* load cache */
if( h->mb.i_neighbour & MB_TOP )
{
h->mb.cache.i_cbp_top = cbp[top];
/* load intra4x4 */
CP32( &h->mb.cache.intra4x4_pred_mode[x264_scan8[0] - 8], &i4x4[top][0] );
/* load non_zero_count */
CP32( &h->mb.cache.non_zero_count[x264_scan8[ 0] - 8], &nnz[top][12] );
CP32( &h->mb.cache.non_zero_count[x264_scan8[16] - 8], &nnz[top][16-4 + (16>>CHROMA_V_SHIFT)] );
CP32( &h->mb.cache.non_zero_count[x264_scan8[32] - 8], &nnz[top][32-4 + (16>>CHROMA_V_SHIFT)] );
/* Finish the prefetching */
for( int l = 0; l < lists; l++ )
{
x264_prefetch( &h->mb.mv[l][top_4x4-1] );
/* Top right being not in the same cacheline as top left will happen
* once every 4 MBs, so one extra prefetch is worthwhile */
x264_prefetch( &h->mb.mv[l][top_4x4+4] );
x264_prefetch( &h->mb.ref[l][top_8x8-1] );
if( h->param.b_cabac )
x264_prefetch( &h->mb.mvd[l][top] );
}
}
else
{
h->mb.cache.i_cbp_top = -1;
/* load intra4x4 */
M32( &h->mb.cache.intra4x4_pred_mode[x264_scan8[0] - 8] ) = 0xFFFFFFFFU;
/* load non_zero_count */
M32( &h->mb.cache.non_zero_count[x264_scan8[ 0] - 8] ) = 0x80808080U;
M32( &h->mb.cache.non_zero_count[x264_scan8[16] - 8] ) = 0x80808080U;
M32( &h->mb.cache.non_zero_count[x264_scan8[32] - 8] ) = 0x80808080U;
}
if( h->mb.i_neighbour & MB_LEFT )
{
int ltop = left[LTOP];
int lbot = b_mbaff ? left[LBOT] : ltop;
if( b_mbaff )
{
const int16_t top_luma = (cbp[ltop] >> (left_index_table->mv[0]&(~1))) & 2;
const int16_t bot_luma = (cbp[lbot] >> (left_index_table->mv[2]&(~1))) & 2;
h->mb.cache.i_cbp_left = (cbp[ltop] & 0xfff0) | (bot_luma<<2) | top_luma;
}
else
h->mb.cache.i_cbp_left = cbp[ltop];
/* load intra4x4 */
h->mb.cache.intra4x4_pred_mode[x264_scan8[ 0] - 1] = i4x4[ltop][left_index_table->intra[0]];
h->mb.cache.intra4x4_pred_mode[x264_scan8[ 2] - 1] = i4x4[ltop][left_index_table->intra[1]];
h->mb.cache.intra4x4_pred_mode[x264_scan8[ 8] - 1] = i4x4[lbot][left_index_table->intra[2]];
h->mb.cache.intra4x4_pred_mode[x264_scan8[10] - 1] = i4x4[lbot][left_index_table->intra[3]];
/* load non_zero_count */
h->mb.cache.non_zero_count[x264_scan8[ 0] - 1] = nnz[ltop][left_index_table->nnz[0]];
h->mb.cache.non_zero_count[x264_scan8[ 2] - 1] = nnz[ltop][left_index_table->nnz[1]];
h->mb.cache.non_zero_count[x264_scan8[ 8] - 1] = nnz[lbot][left_index_table->nnz[2]];
h->mb.cache.non_zero_count[x264_scan8[10] - 1] = nnz[lbot][left_index_table->nnz[3]];
if( CHROMA_FORMAT >= CHROMA_422 )
{
int offset = (4>>CHROMA_H_SHIFT) - 4;
h->mb.cache.non_zero_count[x264_scan8[16+ 0] - 1] = nnz[ltop][left_index_table->nnz[0]+16+offset];
h->mb.cache.non_zero_count[x264_scan8[16+ 2] - 1] = nnz[ltop][left_index_table->nnz[1]+16+offset];
h->mb.cache.non_zero_count[x264_scan8[16+ 8] - 1] = nnz[lbot][left_index_table->nnz[2]+16+offset];
h->mb.cache.non_zero_count[x264_scan8[16+10] - 1] = nnz[lbot][left_index_table->nnz[3]+16+offset];
h->mb.cache.non_zero_count[x264_scan8[32+ 0] - 1] = nnz[ltop][left_index_table->nnz[0]+32+offset];
h->mb.cache.non_zero_count[x264_scan8[32+ 2] - 1] = nnz[ltop][left_index_table->nnz[1]+32+offset];
h->mb.cache.non_zero_count[x264_scan8[32+ 8] - 1] = nnz[lbot][left_index_table->nnz[2]+32+offset];
h->mb.cache.non_zero_count[x264_scan8[32+10] - 1] = nnz[lbot][left_index_table->nnz[3]+32+offset];
}
else
{
h->mb.cache.non_zero_count[x264_scan8[16+ 0] - 1] = nnz[ltop][left_index_table->nnz_chroma[0]];
h->mb.cache.non_zero_count[x264_scan8[16+ 2] - 1] = nnz[lbot][left_index_table->nnz_chroma[1]];
h->mb.cache.non_zero_count[x264_scan8[32+ 0] - 1] = nnz[ltop][left_index_table->nnz_chroma[2]];
h->mb.cache.non_zero_count[x264_scan8[32+ 2] - 1] = nnz[lbot][left_index_table->nnz_chroma[3]];
}
}
else
{
h->mb.cache.i_cbp_left = -1;
h->mb.cache.intra4x4_pred_mode[x264_scan8[ 0] - 1] =
h->mb.cache.intra4x4_pred_mode[x264_scan8[ 2] - 1] =
h->mb.cache.intra4x4_pred_mode[x264_scan8[ 8] - 1] =
h->mb.cache.intra4x4_pred_mode[x264_scan8[10] - 1] = -1;
/* load non_zero_count */
h->mb.cache.non_zero_count[x264_scan8[ 0] - 1] =
h->mb.cache.non_zero_count[x264_scan8[ 2] - 1] =
h->mb.cache.non_zero_count[x264_scan8[ 8] - 1] =
h->mb.cache.non_zero_count[x264_scan8[10] - 1] =
h->mb.cache.non_zero_count[x264_scan8[16+ 0] - 1] =
h->mb.cache.non_zero_count[x264_scan8[16+ 2] - 1] =
h->mb.cache.non_zero_count[x264_scan8[32+ 0] - 1] =
h->mb.cache.non_zero_count[x264_scan8[32+ 2] - 1] = 0x80;
if( CHROMA_FORMAT >= CHROMA_422 )
{
h->mb.cache.non_zero_count[x264_scan8[16+ 8] - 1] =
h->mb.cache.non_zero_count[x264_scan8[16+10] - 1] =
h->mb.cache.non_zero_count[x264_scan8[32+ 8] - 1] =
h->mb.cache.non_zero_count[x264_scan8[32+10] - 1] = 0x80;
}
}
if( h->pps->b_transform_8x8_mode )
{
h->mb.cache.i_neighbour_transform_size =
( (h->mb.i_neighbour & MB_LEFT) && h->mb.mb_transform_size[left[0]] )
+ ( (h->mb.i_neighbour & MB_TOP) && h->mb.mb_transform_size[top] );
}
if( b_mbaff )
{
h->mb.pic.i_fref[0] = h->i_ref[0] << MB_INTERLACED;
h->mb.pic.i_fref[1] = h->i_ref[1] << MB_INTERLACED;
}
if( !b_mbaff )
{
x264_copy_column8( h->mb.pic.p_fdec[0]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[0]+15+ 4*FDEC_STRIDE );
x264_copy_column8( h->mb.pic.p_fdec[0]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[0]+15+12*FDEC_STRIDE );
macroblock_load_pic_pointers( h, mb_x, mb_y, 0, 0, 0 );
if( CHROMA444 )
{
x264_copy_column8( h->mb.pic.p_fdec[1]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[1]+15+ 4*FDEC_STRIDE );
x264_copy_column8( h->mb.pic.p_fdec[1]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[1]+15+12*FDEC_STRIDE );
x264_copy_column8( h->mb.pic.p_fdec[2]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[2]+15+ 4*FDEC_STRIDE );
x264_copy_column8( h->mb.pic.p_fdec[2]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[2]+15+12*FDEC_STRIDE );
macroblock_load_pic_pointers( h, mb_x, mb_y, 1, 0, 0 );
macroblock_load_pic_pointers( h, mb_x, mb_y, 2, 0, 0 );
}
else if( CHROMA_FORMAT )
{
x264_copy_column8( h->mb.pic.p_fdec[1]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[1]+ 7+ 4*FDEC_STRIDE );
x264_copy_column8( h->mb.pic.p_fdec[2]-1+ 4*FDEC_STRIDE, h->mb.pic.p_fdec[2]+ 7+ 4*FDEC_STRIDE );
if( CHROMA_FORMAT == CHROMA_422 )
{
x264_copy_column8( h->mb.pic.p_fdec[1]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[1]+ 7+12*FDEC_STRIDE );
x264_copy_column8( h->mb.pic.p_fdec[2]-1+12*FDEC_STRIDE, h->mb.pic.p_fdec[2]+ 7+12*FDEC_STRIDE );
}
macroblock_load_pic_pointers( h, mb_x, mb_y, 1, 1, 0 );
}
}
else
{
macroblock_load_pic_pointers( h, mb_x, mb_y, 0, 0, 1 );
if( CHROMA444 )
{
macroblock_load_pic_pointers( h, mb_x, mb_y, 1, 0, 1 );
macroblock_load_pic_pointers( h, mb_x, mb_y, 2, 0, 1 );
}
else if( CHROMA_FORMAT )
macroblock_load_pic_pointers( h, mb_x, mb_y, 1, 1, 1 );
}
if( h->fdec->integral )
{
int offset = 16 * (mb_x + mb_y * h->fdec->i_stride[0]);
for( int list = 0; list < 2; list++ )
for( int i = 0; i < h->mb.pic.i_fref[list]; i++ )
h->mb.pic.p_integral[list][i] = &h->fref[list][i]->integral[offset];
}
x264_prefetch_fenc( h, h->fenc, mb_x, mb_y );
/* load ref/mv/mvd */
for( int l = 0; l < lists; l++ )
{
int16_t (*mv)[2] = h->mb.mv[l];
int8_t *ref = h->mb.ref[l];
int i8 = x264_scan8[0] - 1 - 1*8;
if( h->mb.i_neighbour & MB_TOPLEFT )
{
int ir = b_mbaff ? 2*(s8x8*h->mb.i_mb_topleft_y + mb_x-1)+1+s8x8 : top_8x8 - 1;
int iv = b_mbaff ? 4*(s4x4*h->mb.i_mb_topleft_y + mb_x-1)+3+3*s4x4 : top_4x4 - 1;
if( b_mbaff && h->mb.topleft_partition )
{
/* Take motion vector from the middle of macroblock instead of
* the bottom right as usual. */
iv -= 2*s4x4;
ir -= s8x8;
}
h->mb.cache.ref[l][i8] = ref[ir];
CP32( h->mb.cache.mv[l][i8], mv[iv] );
}
else
{
h->mb.cache.ref[l][i8] = -2;
M32( h->mb.cache.mv[l][i8] ) = 0;
}
i8 = x264_scan8[0] - 8;
if( h->mb.i_neighbour & MB_TOP )
{
h->mb.cache.ref[l][i8+0] =
h->mb.cache.ref[l][i8+1] = ref[top_8x8 + 0];
h->mb.cache.ref[l][i8+2] =
h->mb.cache.ref[l][i8+3] = ref[top_8x8 + 1];
CP128( h->mb.cache.mv[l][i8], mv[top_4x4] );
}
else
{
M128( h->mb.cache.mv[l][i8] ) = M128_ZERO;
M32( &h->mb.cache.ref[l][i8] ) = (uint8_t)(-2) * 0x01010101U;
}
i8 = x264_scan8[0] + 4 - 1*8;
if( h->mb.i_neighbour & MB_TOPRIGHT )
{
int ir = b_mbaff ? 2*(s8x8*h->mb.i_mb_topright_y + (mb_x+1))+s8x8 : top_8x8 + 2;
int iv = b_mbaff ? 4*(s4x4*h->mb.i_mb_topright_y + (mb_x+1))+3*s4x4 : top_4x4 + 4;
h->mb.cache.ref[l][i8] = ref[ir];
CP32( h->mb.cache.mv[l][i8], mv[iv] );
}
else
h->mb.cache.ref[l][i8] = -2;
i8 = x264_scan8[0] - 1;
if( h->mb.i_neighbour & MB_LEFT )
{
if( b_mbaff )
{
h->mb.cache.ref[l][i8+0*8] = ref[h->mb.left_b8[LTOP] + 1 + s8x8*left_index_table->ref[0]];
h->mb.cache.ref[l][i8+1*8] = ref[h->mb.left_b8[LTOP] + 1 + s8x8*left_index_table->ref[1]];
h->mb.cache.ref[l][i8+2*8] = ref[h->mb.left_b8[LBOT] + 1 + s8x8*left_index_table->ref[2]];
h->mb.cache.ref[l][i8+3*8] = ref[h->mb.left_b8[LBOT] + 1 + s8x8*left_index_table->ref[3]];
CP32( h->mb.cache.mv[l][i8+0*8], mv[h->mb.left_b4[LTOP] + 3 + s4x4*left_index_table->mv[0]] );
CP32( h->mb.cache.mv[l][i8+1*8], mv[h->mb.left_b4[LTOP] + 3 + s4x4*left_index_table->mv[1]] );
CP32( h->mb.cache.mv[l][i8+2*8], mv[h->mb.left_b4[LBOT] + 3 + s4x4*left_index_table->mv[2]] );
CP32( h->mb.cache.mv[l][i8+3*8], mv[h->mb.left_b4[LBOT] + 3 + s4x4*left_index_table->mv[3]] );
}
else
{
const int ir = h->mb.i_b8_xy - 1;
const int iv = h->mb.i_b4_xy - 1;
h->mb.cache.ref[l][i8+0*8] =
h->mb.cache.ref[l][i8+1*8] = ref[ir + 0*s8x8];
h->mb.cache.ref[l][i8+2*8] =
h->mb.cache.ref[l][i8+3*8] = ref[ir + 1*s8x8];
CP32( h->mb.cache.mv[l][i8+0*8], mv[iv + 0*s4x4] );
CP32( h->mb.cache.mv[l][i8+1*8], mv[iv + 1*s4x4] );
CP32( h->mb.cache.mv[l][i8+2*8], mv[iv + 2*s4x4] );
CP32( h->mb.cache.mv[l][i8+3*8], mv[iv + 3*s4x4] );
}
}
else
{
for( int i = 0; i < 4; i++ )
{
h->mb.cache.ref[l][i8+i*8] = -2;
M32( h->mb.cache.mv[l][i8+i*8] ) = 0;
}
}
/* Extra logic for top right mv in mbaff.
* . . . d . . a .
* . . . e . . . .
* . . . f b . c .
* . . . . . . . .
*
* If the top right of the 4x4 partitions labeled a, b and c in the
* above diagram do not exist, but the entries d, e and f exist (in
* the macroblock to the left) then use those instead.
*/
if( b_mbaff && (h->mb.i_neighbour & MB_LEFT) )
{
if( MB_INTERLACED && !h->mb.field[h->mb.i_mb_xy-1] )
{
h->mb.cache.topright_ref[l][0] = ref[h->mb.left_b8[0] + 1 + s8x8*0];
h->mb.cache.topright_ref[l][1] = ref[h->mb.left_b8[0] + 1 + s8x8*1];
h->mb.cache.topright_ref[l][2] = ref[h->mb.left_b8[1] + 1 + s8x8*0];
CP32( h->mb.cache.topright_mv[l][0], mv[h->mb.left_b4[0] + 3 + s4x4*(left_index_table->mv[0]+1)] );
CP32( h->mb.cache.topright_mv[l][1], mv[h->mb.left_b4[0] + 3 + s4x4*(left_index_table->mv[1]+1)] );
CP32( h->mb.cache.topright_mv[l][2], mv[h->mb.left_b4[1] + 3 + s4x4*(left_index_table->mv[2]+1)] );
}
else if( !MB_INTERLACED && h->mb.field[h->mb.i_mb_xy-1] )
{
// Looking at the bottom field so always take the bottom macroblock of the pair.
h->mb.cache.topright_ref[l][0] = ref[h->mb.left_b8[0] + 1 + s8x8*2 + s8x8*left_index_table->ref[0]];
h->mb.cache.topright_ref[l][1] = ref[h->mb.left_b8[0] + 1 + s8x8*2 + s8x8*left_index_table->ref[1]];
h->mb.cache.topright_ref[l][2] = ref[h->mb.left_b8[0] + 1 + s8x8*2 + s8x8*left_index_table->ref[2]];
CP32( h->mb.cache.topright_mv[l][0], mv[h->mb.left_b4[0] + 3 + s4x4*4 + s4x4*left_index_table->mv[0]] );
CP32( h->mb.cache.topright_mv[l][1], mv[h->mb.left_b4[0] + 3 + s4x4*4 + s4x4*left_index_table->mv[1]] );
CP32( h->mb.cache.topright_mv[l][2], mv[h->mb.left_b4[0] + 3 + s4x4*4 + s4x4*left_index_table->mv[2]] );
}
}
if( h->param.b_cabac )
{
uint8_t (*mvd)[8][2] = h->mb.mvd[l];
if( h->mb.i_neighbour & MB_TOP )
CP64( h->mb.cache.mvd[l][x264_scan8[0] - 8], mvd[top][0] );
else
M64( h->mb.cache.mvd[l][x264_scan8[0] - 8] ) = 0;
if( h->mb.i_neighbour & MB_LEFT && (!b_mbaff || h->mb.cache.ref[l][x264_scan8[0]-1] >= 0) )
{
CP16( h->mb.cache.mvd[l][x264_scan8[0 ] - 1], mvd[left[LTOP]][left_index_table->intra[0]] );
CP16( h->mb.cache.mvd[l][x264_scan8[2 ] - 1], mvd[left[LTOP]][left_index_table->intra[1]] );
}
else
{
M16( h->mb.cache.mvd[l][x264_scan8[0]-1+0*8] ) = 0;
M16( h->mb.cache.mvd[l][x264_scan8[0]-1+1*8] ) = 0;
}
if( h->mb.i_neighbour & MB_LEFT && (!b_mbaff || h->mb.cache.ref[l][x264_scan8[0]-1+2*8] >= 0) )
{
CP16( h->mb.cache.mvd[l][x264_scan8[8 ] - 1], mvd[left[LBOT]][left_index_table->intra[2]] );
CP16( h->mb.cache.mvd[l][x264_scan8[10] - 1], mvd[left[LBOT]][left_index_table->intra[3]] );
}
else
{
M16( h->mb.cache.mvd[l][x264_scan8[0]-1+2*8] ) = 0;
M16( h->mb.cache.mvd[l][x264_scan8[0]-1+3*8] ) = 0;
}
}
/* If motion vectors are cached from frame macroblocks but this
* macroblock is a field macroblock then the motion vector must be
* halved. Similarly, motion vectors from field macroblocks are doubled. */
if( b_mbaff )
{
#define MAP_MVS\
if( FIELD_DIFFERENT(h->mb.i_mb_topleft_xy) )\
MAP_F2F(mv, ref, x264_scan8[0] - 1 - 1*8)\
if( FIELD_DIFFERENT(top) )\
{\
MAP_F2F(mv, ref, x264_scan8[0] + 0 - 1*8)\
MAP_F2F(mv, ref, x264_scan8[0] + 1 - 1*8)\
MAP_F2F(mv, ref, x264_scan8[0] + 2 - 1*8)\
MAP_F2F(mv, ref, x264_scan8[0] + 3 - 1*8)\
}\
if( FIELD_DIFFERENT(h->mb.i_mb_topright_xy) )\
MAP_F2F(mv, ref, x264_scan8[0] + 4 - 1*8)\
if( FIELD_DIFFERENT(left[0]) )\
{\
MAP_F2F(mv, ref, x264_scan8[0] - 1 + 0*8)\
MAP_F2F(mv, ref, x264_scan8[0] - 1 + 1*8)\
MAP_F2F(mv, ref, x264_scan8[0] - 1 + 2*8)\
MAP_F2F(mv, ref, x264_scan8[0] - 1 + 3*8)\
MAP_F2F(topright_mv, topright_ref, 0)\
MAP_F2F(topright_mv, topright_ref, 1)\
MAP_F2F(topright_mv, topright_ref, 2)\
}
if( MB_INTERLACED )
{
#define FIELD_DIFFERENT(macroblock) (macroblock >= 0 && !h->mb.field[macroblock])
#define MAP_F2F(varmv, varref, index)\
if( h->mb.cache.varref[l][index] >= 0 )\
{\
h->mb.cache.varref[l][index] <<= 1;\
h->mb.cache.varmv[l][index][1] /= 2;\
h->mb.cache.mvd[l][index][1] >>= 1;\
}
MAP_MVS
#undef MAP_F2F
#undef FIELD_DIFFERENT
}
else
{
#define FIELD_DIFFERENT(macroblock) (macroblock >= 0 && h->mb.field[macroblock])
#define MAP_F2F(varmv, varref, index)\
if( h->mb.cache.varref[l][index] >= 0 )\
{\
h->mb.cache.varref[l][index] >>= 1;\
h->mb.cache.varmv[l][index][1] *= 2;\
h->mb.cache.mvd[l][index][1] <<= 1;\
}
MAP_MVS
#undef MAP_F2F
#undef FIELD_DIFFERENT
}
}
}
if( b_mbaff && mb_x == 0 && !(mb_y&1) )
{
if( h->mb.i_mb_top_xy >= h->sh.i_first_mb )
h->mb.field_decoding_flag = h->mb.field[h->mb.i_mb_top_xy];
else
h->mb.field_decoding_flag = 0;
}
/* Check whether skip here would cause decoder to predict interlace mode incorrectly.
* FIXME: It might be better to change the interlace type rather than forcing a skip to be non-skip. */
h->mb.b_allow_skip = 1;
if( b_mbaff )
{
if( MB_INTERLACED != h->mb.field_decoding_flag &&
(mb_y&1) && IS_SKIP(h->mb.type[h->mb.i_mb_xy - h->mb.i_mb_stride]) )
h->mb.b_allow_skip = 0;
}
if( h->param.b_cabac )
{
if( b_mbaff )
{
int left_xy, top_xy;
/* Neighbours here are calculated based on field_decoding_flag */
int mb_xy = mb_x + (mb_y&~1)*h->mb.i_mb_stride;
left_xy = mb_xy - 1;
if( (mb_y&1) && mb_x > 0 && h->mb.field_decoding_flag == h->mb.field[left_xy] )
left_xy += h->mb.i_mb_stride;
if( h->mb.field_decoding_flag )
{
top_xy = mb_xy - h->mb.i_mb_stride;
if( !(mb_y&1) && top_xy >= 0 && h->mb.slice_table[top_xy] == h->sh.i_first_mb && h->mb.field[top_xy] )
top_xy -= h->mb.i_mb_stride;
}
else
top_xy = mb_x + (mb_y-1)*h->mb.i_mb_stride;
h->mb.cache.i_neighbour_skip = (mb_x > 0 && h->mb.slice_table[left_xy] == h->sh.i_first_mb && !IS_SKIP( h->mb.type[left_xy] ))
+ (top_xy >= 0 && h->mb.slice_table[top_xy] == h->sh.i_first_mb && !IS_SKIP( h->mb.type[top_xy] ));
}
else
{
h->mb.cache.i_neighbour_skip = ((h->mb.i_neighbour & MB_LEFT) && !IS_SKIP( h->mb.i_mb_type_left[0] ))
+ ((h->mb.i_neighbour & MB_TOP) && !IS_SKIP( h->mb.i_mb_type_top ));
}
}
/* load skip */
if( h->sh.i_type == SLICE_TYPE_B )
{
h->mb.bipred_weight = h->mb.bipred_weight_buf[MB_INTERLACED][MB_INTERLACED&(mb_y&1)];
h->mb.dist_scale_factor = h->mb.dist_scale_factor_buf[MB_INTERLACED][MB_INTERLACED&(mb_y&1)];
if( h->param.b_cabac )
{
uint8_t skipbp;
x264_macroblock_cache_skip( h, 0, 0, 4, 4, 0 );
if( b_mbaff )
{
skipbp = (h->mb.i_neighbour & MB_LEFT) ? h->mb.skipbp[left[LTOP]] : 0;
h->mb.cache.skip[x264_scan8[0] - 1] = (skipbp >> (1+(left_index_table->mv[0]&~1))) & 1;
skipbp = (h->mb.i_neighbour & MB_LEFT) ? h->mb.skipbp[left[LBOT]] : 0;
h->mb.cache.skip[x264_scan8[8] - 1] = (skipbp >> (1+(left_index_table->mv[2]&~1))) & 1;
}
else
{
skipbp = (h->mb.i_neighbour & MB_LEFT) ? h->mb.skipbp[left[0]] : 0;
h->mb.cache.skip[x264_scan8[0] - 1] = skipbp & 0x2;
h->mb.cache.skip[x264_scan8[8] - 1] = skipbp & 0x8;
}
skipbp = (h->mb.i_neighbour & MB_TOP) ? h->mb.skipbp[top] : 0;
h->mb.cache.skip[x264_scan8[0] - 8] = skipbp & 0x4;
h->mb.cache.skip[x264_scan8[4] - 8] = skipbp & 0x8;
}
}
if( h->sh.i_type == SLICE_TYPE_P )
x264_mb_predict_mv_pskip( h, h->mb.cache.pskip_mv );
h->mb.i_neighbour4[0] =
h->mb.i_neighbour8[0] = (h->mb.i_neighbour_intra & (MB_TOP|MB_LEFT|MB_TOPLEFT))
| ((h->mb.i_neighbour_intra & MB_TOP) ? MB_TOPRIGHT : 0);
h->mb.i_neighbour4[4] =
h->mb.i_neighbour4[1] = MB_LEFT | ((h->mb.i_neighbour_intra & MB_TOP) ? (MB_TOP|MB_TOPLEFT|MB_TOPRIGHT) : 0);
h->mb.i_neighbour4[2] =
h->mb.i_neighbour4[8] =
h->mb.i_neighbour4[10] =
h->mb.i_neighbour8[2] = MB_TOP|MB_TOPRIGHT | ((h->mb.i_neighbour_intra & MB_LEFT) ? (MB_LEFT|MB_TOPLEFT) : 0);
h->mb.i_neighbour4[5] =
h->mb.i_neighbour8[1] = MB_LEFT | (h->mb.i_neighbour_intra & MB_TOPRIGHT)
| ((h->mb.i_neighbour_intra & MB_TOP) ? MB_TOP|MB_TOPLEFT : 0);
}
void x264_macroblock_cache_load_progressive( x264_t *h, int mb_x, int mb_y )
{
macroblock_cache_load( h, mb_x, mb_y, 0 );
}
void x264_macroblock_cache_load_interlaced( x264_t *h, int mb_x, int mb_y )
{
macroblock_cache_load( h, mb_x, mb_y, 1 );
}
static void macroblock_deblock_strength_mbaff( x264_t *h, uint8_t (*bs)[8][4] )
{
if( (h->mb.i_neighbour & MB_LEFT) && h->mb.field[h->mb.i_mb_left_xy[0]] != MB_INTERLACED )
{
static const uint8_t offset[2][2][8] =
{ { { 0, 0, 0, 0, 1, 1, 1, 1 },
{ 2, 2, 2, 2, 3, 3, 3, 3 }, },
{ { 0, 1, 2, 3, 0, 1, 2, 3 },
{ 0, 1, 2, 3, 0, 1, 2, 3 }, }
};
ALIGNED_ARRAY_8( uint8_t, tmpbs, [8] );
const uint8_t *off = offset[MB_INTERLACED][h->mb.i_mb_y&1];
uint8_t (*nnz)[48] = h->mb.non_zero_count;
for( int i = 0; i < 8; i++ )
{
int left = h->mb.i_mb_left_xy[MB_INTERLACED ? i>>2 : i&1];
int nnz_this = h->mb.cache.non_zero_count[x264_scan8[0]+8*(i>>1)];
int nnz_left = nnz[left][3 + 4*off[i]];
if( !h->param.b_cabac && h->pps->b_transform_8x8_mode )
{
int j = off[i]&~1;
if( h->mb.mb_transform_size[left] )
nnz_left = !!(M16( &nnz[left][2+4*j] ) | M16( &nnz[left][2+4*(1+j)] ));
}
tmpbs[i] = (nnz_left || nnz_this) ? 2 : 1;
}
if( MB_INTERLACED )
{
CP32( bs[0][0], &tmpbs[0] );
CP32( bs[0][4], &tmpbs[4] );
}
else
{
for( int i = 0; i < 4; i++ ) bs[0][0][i] = tmpbs[2*i];
for( int i = 0; i < 4; i++ ) bs[0][4][i] = tmpbs[1+2*i];
}
}
if( (h->mb.i_neighbour & MB_TOP) && MB_INTERLACED != h->mb.field[h->mb.i_mb_top_xy] )
{
if( !(h->mb.i_mb_y&1) && !MB_INTERLACED )
{
/* Need to filter both fields (even for frame macroblocks).
* Filter top two rows using the top macroblock of the above
* pair and then the bottom one. */
int mbn_xy = h->mb.i_mb_xy - 2 * h->mb.i_mb_stride;
uint8_t *nnz_cur = &h->mb.cache.non_zero_count[x264_scan8[0]];
for( int j = 0; j < 2; j++, mbn_xy += h->mb.i_mb_stride )
{
uint8_t (*nnz)[48] = h->mb.non_zero_count;
ALIGNED_4( uint8_t nnz_top[4] );
CP32( nnz_top, &nnz[mbn_xy][3*4] );
if( !h->param.b_cabac && h->pps->b_transform_8x8_mode && h->mb.mb_transform_size[mbn_xy] )
{
nnz_top[0] = nnz_top[1] = M16( &nnz[mbn_xy][ 8] ) || M16( &nnz[mbn_xy][12] );
nnz_top[2] = nnz_top[3] = M16( &nnz[mbn_xy][10] ) || M16( &nnz[mbn_xy][14] );
}
for( int i = 0; i < 4; i++ )
bs[1][4*j][i] = (nnz_cur[i] || nnz_top[i]) ? 2 : 1;
}
}
else
for( int i = 0; i < 4; i++ )
bs[1][0][i] = X264_MAX( bs[1][0][i], 1 );
}
}
void x264_macroblock_deblock_strength( x264_t *h )
{
uint8_t (*bs)[8][4] = h->mb.cache.deblock_strength;
if( IS_INTRA( h->mb.i_type ) )
{
M32( bs[0][1] ) = 0x03030303;
M64( bs[0][2] ) = 0x0303030303030303ULL;
M32( bs[1][1] ) = 0x03030303;
M64( bs[1][2] ) = 0x0303030303030303ULL;
return;
}
/* Early termination: in this case, nnz guarantees all edges use strength 2.*/
if( h->mb.b_transform_8x8 && !CHROMA444 )
{
int cbp_mask = 0xf >> CHROMA_V_SHIFT;
if( (h->mb.i_cbp_luma&cbp_mask) == cbp_mask )
{
M32( bs[0][0] ) = 0x02020202;
M32( bs[0][2] ) = 0x02020202;
M32( bs[0][4] ) = 0x02020202;
M64( bs[1][0] ) = 0x0202020202020202ULL; /* [1][1] and [1][3] has to be set for 4:2:2 */
M64( bs[1][2] ) = 0x0202020202020202ULL;
M32( bs[1][4] ) = 0x02020202;
return;
}
}
int neighbour_changed = 0;
if( h->sh.i_disable_deblocking_filter_idc != 2 )
{
neighbour_changed = h->mb.i_neighbour_frame&~h->mb.i_neighbour;
h->mb.i_neighbour = h->mb.i_neighbour_frame;
}
/* MBAFF deblock uses different left neighbors from encoding */
if( SLICE_MBAFF && (h->mb.i_neighbour & MB_LEFT) && (h->mb.field[h->mb.i_mb_xy - 1] != MB_INTERLACED) )
{
h->mb.i_mb_left_xy[1] =
h->mb.i_mb_left_xy[0] = h->mb.i_mb_xy - 1;
if( h->mb.i_mb_y&1 )
h->mb.i_mb_left_xy[0] -= h->mb.i_mb_stride;
else
h->mb.i_mb_left_xy[1] += h->mb.i_mb_stride;
}
/* If we have multiple slices and we're deblocking on slice edges, we
* have to reload neighbour data. */
if( neighbour_changed )
{
int top_y = h->mb.i_mb_top_y;
int top_8x8 = (2*top_y+1) * h->mb.i_b8_stride + 2*h->mb.i_mb_x;
int top_4x4 = (4*top_y+3) * h->mb.i_b4_stride + 4*h->mb.i_mb_x;
int s8x8 = h->mb.i_b8_stride;
int s4x4 = h->mb.i_b4_stride;
uint8_t (*nnz)[48] = h->mb.non_zero_count;
const x264_left_table_t *left_index_table = SLICE_MBAFF ? h->mb.left_index_table : &left_indices[3];
if( neighbour_changed & MB_TOP )
CP32( &h->mb.cache.non_zero_count[x264_scan8[0] - 8], &nnz[h->mb.i_mb_top_xy][12] );
if( neighbour_changed & MB_LEFT )
{
int *left = h->mb.i_mb_left_xy;
h->mb.cache.non_zero_count[x264_scan8[0 ] - 1] = nnz[left[0]][left_index_table->nnz[0]];
h->mb.cache.non_zero_count[x264_scan8[2 ] - 1] = nnz[left[0]][left_index_table->nnz[1]];
h->mb.cache.non_zero_count[x264_scan8[8 ] - 1] = nnz[left[1]][left_index_table->nnz[2]];
h->mb.cache.non_zero_count[x264_scan8[10] - 1] = nnz[left[1]][left_index_table->nnz[3]];
}
for( int l = 0; l <= (h->sh.i_type == SLICE_TYPE_B); l++ )
{
int16_t (*mv)[2] = h->mb.mv[l];
int8_t *ref = h->mb.ref[l];
int i8 = x264_scan8[0] - 8;
if( neighbour_changed & MB_TOP )
{
h->mb.cache.ref[l][i8+0] =
h->mb.cache.ref[l][i8+1] = ref[top_8x8 + 0];
h->mb.cache.ref[l][i8+2] =
h->mb.cache.ref[l][i8+3] = ref[top_8x8 + 1];
CP128( h->mb.cache.mv[l][i8], mv[top_4x4] );
}
i8 = x264_scan8[0] - 1;
if( neighbour_changed & MB_LEFT )
{
h->mb.cache.ref[l][i8+0*8] =
h->mb.cache.ref[l][i8+1*8] = ref[h->mb.left_b8[0] + 1 + s8x8*left_index_table->ref[0]];
h->mb.cache.ref[l][i8+2*8] =
h->mb.cache.ref[l][i8+3*8] = ref[h->mb.left_b8[1] + 1 + s8x8*left_index_table->ref[2]];
CP32( h->mb.cache.mv[l][i8+0*8], mv[h->mb.left_b4[0] + 3 + s4x4*left_index_table->mv[0]] );
CP32( h->mb.cache.mv[l][i8+1*8], mv[h->mb.left_b4[0] + 3 + s4x4*left_index_table->mv[1]] );
CP32( h->mb.cache.mv[l][i8+2*8], mv[h->mb.left_b4[1] + 3 + s4x4*left_index_table->mv[2]] );
CP32( h->mb.cache.mv[l][i8+3*8], mv[h->mb.left_b4[1] + 3 + s4x4*left_index_table->mv[3]] );
}
}
}
if( h->param.analyse.i_weighted_pred == X264_WEIGHTP_SMART && h->sh.i_type == SLICE_TYPE_P )
{
/* Handle reference frame duplicates */
int i8 = x264_scan8[0] - 8;
h->mb.cache.ref[0][i8+0] =
h->mb.cache.ref[0][i8+1] = deblock_ref_table(h->mb.cache.ref[0][i8+0]);
h->mb.cache.ref[0][i8+2] =
h->mb.cache.ref[0][i8+3] = deblock_ref_table(h->mb.cache.ref[0][i8+2]);
i8 = x264_scan8[0] - 1;
h->mb.cache.ref[0][i8+0*8] =
h->mb.cache.ref[0][i8+1*8] = deblock_ref_table(h->mb.cache.ref[0][i8+0*8]);
h->mb.cache.ref[0][i8+2*8] =
h->mb.cache.ref[0][i8+3*8] = deblock_ref_table(h->mb.cache.ref[0][i8+2*8]);
int ref0 = deblock_ref_table(h->mb.cache.ref[0][x264_scan8[ 0]]);
int ref1 = deblock_ref_table(h->mb.cache.ref[0][x264_scan8[ 4]]);
int ref2 = deblock_ref_table(h->mb.cache.ref[0][x264_scan8[ 8]]);
int ref3 = deblock_ref_table(h->mb.cache.ref[0][x264_scan8[12]]);
uint32_t reftop = pack16to32( (uint8_t)ref0, (uint8_t)ref1 ) * 0x0101;
uint32_t refbot = pack16to32( (uint8_t)ref2, (uint8_t)ref3 ) * 0x0101;
M32( &h->mb.cache.ref[0][x264_scan8[0]+8*0] ) = reftop;
M32( &h->mb.cache.ref[0][x264_scan8[0]+8*1] ) = reftop;
M32( &h->mb.cache.ref[0][x264_scan8[0]+8*2] ) = refbot;
M32( &h->mb.cache.ref[0][x264_scan8[0]+8*3] ) = refbot;
}
/* Munge NNZ for cavlc + 8x8dct */
if( !h->param.b_cabac && h->pps->b_transform_8x8_mode )
{
uint8_t (*nnz)[48] = h->mb.non_zero_count;
int top = h->mb.i_mb_top_xy;
int *left = h->mb.i_mb_left_xy;
if( (h->mb.i_neighbour & MB_TOP) && h->mb.mb_transform_size[top] )
{
int i8 = x264_scan8[0] - 8;
int nnz_top0 = M16( &nnz[top][8] ) | M16( &nnz[top][12] );
int nnz_top1 = M16( &nnz[top][10] ) | M16( &nnz[top][14] );
M16( &h->mb.cache.non_zero_count[i8+0] ) = nnz_top0 ? 0x0101 : 0;
M16( &h->mb.cache.non_zero_count[i8+2] ) = nnz_top1 ? 0x0101 : 0;
}
if( h->mb.i_neighbour & MB_LEFT )
{
int i8 = x264_scan8[0] - 1;
if( h->mb.mb_transform_size[left[0]] )
{
int nnz_left0 = M16( &nnz[left[0]][2] ) | M16( &nnz[left[0]][6] );
h->mb.cache.non_zero_count[i8+8*0] = !!nnz_left0;
h->mb.cache.non_zero_count[i8+8*1] = !!nnz_left0;
}
if( h->mb.mb_transform_size[left[1]] )
{
int nnz_left1 = M16( &nnz[left[1]][10] ) | M16( &nnz[left[1]][14] );
h->mb.cache.non_zero_count[i8+8*2] = !!nnz_left1;
h->mb.cache.non_zero_count[i8+8*3] = !!nnz_left1;
}
}
if( h->mb.b_transform_8x8 )
{
int nnz0 = M16( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[ 2]] );
int nnz1 = M16( &h->mb.cache.non_zero_count[x264_scan8[ 4]] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[ 6]] );
int nnz2 = M16( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[10]] );
int nnz3 = M16( &h->mb.cache.non_zero_count[x264_scan8[12]] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[14]] );
uint32_t nnztop = pack16to32( !!nnz0, !!nnz1 ) * 0x0101;
uint32_t nnzbot = pack16to32( !!nnz2, !!nnz3 ) * 0x0101;
M32( &h->mb.cache.non_zero_count[x264_scan8[0]+8*0] ) = nnztop;
M32( &h->mb.cache.non_zero_count[x264_scan8[0]+8*1] ) = nnztop;
M32( &h->mb.cache.non_zero_count[x264_scan8[0]+8*2] ) = nnzbot;
M32( &h->mb.cache.non_zero_count[x264_scan8[0]+8*3] ) = nnzbot;
}
}
h->loopf.deblock_strength( h->mb.cache.non_zero_count, h->mb.cache.ref, h->mb.cache.mv,
bs, 4 >> MB_INTERLACED, h->sh.i_type == SLICE_TYPE_B );
if( SLICE_MBAFF )
macroblock_deblock_strength_mbaff( h, bs );
}
static ALWAYS_INLINE void macroblock_store_pic( x264_t *h, int mb_x, int mb_y, int i, int b_chroma, int b_mbaff )
{
int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16;
int i_stride = h->fdec->i_stride[i];
int i_stride2 = i_stride << (b_mbaff && MB_INTERLACED);
int i_pix_offset = (b_mbaff && MB_INTERLACED)
? 16 * mb_x + height * (mb_y&~1) * i_stride + (mb_y&1) * i_stride
: 16 * mb_x + height * mb_y * i_stride;
if( b_chroma )
h->mc.store_interleave_chroma( &h->fdec->plane[1][i_pix_offset], i_stride2, h->mb.pic.p_fdec[1], h->mb.pic.p_fdec[2], height );
else
h->mc.copy[PIXEL_16x16]( &h->fdec->plane[i][i_pix_offset], i_stride2, h->mb.pic.p_fdec[i], FDEC_STRIDE, 16 );
}
static ALWAYS_INLINE void macroblock_backup_intra( x264_t *h, int mb_x, int mb_y, int b_mbaff )
{
/* In MBAFF we store the last two rows in intra_border_backup[0] and [1].
* For progressive mbs this is the bottom two rows, and for interlaced the
* bottom row of each field. We also store samples needed for the next
* mbpair in intra_border_backup[2]. */
int backup_dst = !b_mbaff ? (mb_y&1) : (mb_y&1) ? 1 : MB_INTERLACED ? 0 : 2;
memcpy( &h->intra_border_backup[backup_dst][0][mb_x*16 ], h->mb.pic.p_fdec[0]+FDEC_STRIDE*15, 16*SIZEOF_PIXEL );
if( CHROMA444 )
{
memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16 ], h->mb.pic.p_fdec[1]+FDEC_STRIDE*15, 16*SIZEOF_PIXEL );
memcpy( &h->intra_border_backup[backup_dst][2][mb_x*16 ], h->mb.pic.p_fdec[2]+FDEC_STRIDE*15, 16*SIZEOF_PIXEL );
}
else if( CHROMA_FORMAT )
{
int backup_src = (15>>CHROMA_V_SHIFT) * FDEC_STRIDE;
memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16 ], h->mb.pic.p_fdec[1]+backup_src, 8*SIZEOF_PIXEL );
memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16+8], h->mb.pic.p_fdec[2]+backup_src, 8*SIZEOF_PIXEL );
}
if( b_mbaff )
{
if( mb_y&1 )
{
int backup_src = (MB_INTERLACED ? 7 : 14) * FDEC_STRIDE;
backup_dst = MB_INTERLACED ? 2 : 0;
memcpy( &h->intra_border_backup[backup_dst][0][mb_x*16 ], h->mb.pic.p_fdec[0]+backup_src, 16*SIZEOF_PIXEL );
if( CHROMA444 )
{
memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16 ], h->mb.pic.p_fdec[1]+backup_src, 16*SIZEOF_PIXEL );
memcpy( &h->intra_border_backup[backup_dst][2][mb_x*16 ], h->mb.pic.p_fdec[2]+backup_src, 16*SIZEOF_PIXEL );
}
else if( CHROMA_FORMAT )
{
if( CHROMA_FORMAT == CHROMA_420 )
backup_src = (MB_INTERLACED ? 3 : 6) * FDEC_STRIDE;
memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16 ], h->mb.pic.p_fdec[1]+backup_src, 8*SIZEOF_PIXEL );
memcpy( &h->intra_border_backup[backup_dst][1][mb_x*16+8], h->mb.pic.p_fdec[2]+backup_src, 8*SIZEOF_PIXEL );
}
}
}
}
void x264_macroblock_cache_save( x264_t *h )
{
const int i_mb_xy = h->mb.i_mb_xy;
const int i_mb_type = x264_mb_type_fix[h->mb.i_type];
const int s8x8 = h->mb.i_b8_stride;
const int s4x4 = h->mb.i_b4_stride;
const int i_mb_4x4 = h->mb.i_b4_xy;
const int i_mb_8x8 = h->mb.i_b8_xy;
/* GCC pessimizes direct stores to heap-allocated arrays due to aliasing. */
/* By only dereferencing them once, we avoid this issue. */
int8_t *i4x4 = h->mb.intra4x4_pred_mode[i_mb_xy];
uint8_t *nnz = h->mb.non_zero_count[i_mb_xy];
if( SLICE_MBAFF )
{
macroblock_backup_intra( h, h->mb.i_mb_x, h->mb.i_mb_y, 1 );
macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 0, 0, 1 );
if( CHROMA444 )
{
macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 1, 0, 1 );
macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 2, 0, 1 );
}
else if( CHROMA_FORMAT )
macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 1, 1, 1 );
}
else
{
macroblock_backup_intra( h, h->mb.i_mb_x, h->mb.i_mb_y, 0 );
macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 0, 0, 0 );
if( CHROMA444 )
{
macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 1, 0, 0 );
macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 2, 0, 0 );
}
else if( CHROMA_FORMAT )
macroblock_store_pic( h, h->mb.i_mb_x, h->mb.i_mb_y, 1, 1, 0 );
}
x264_prefetch_fenc( h, h->fdec, h->mb.i_mb_x, h->mb.i_mb_y );
h->mb.type[i_mb_xy] = i_mb_type;
h->mb.slice_table[i_mb_xy] = h->sh.i_first_mb;
h->mb.partition[i_mb_xy] = IS_INTRA( i_mb_type ) ? D_16x16 : h->mb.i_partition;
h->mb.i_mb_prev_xy = i_mb_xy;
/* save intra4x4 */
if( i_mb_type == I_4x4 )
{
CP32( &i4x4[0], &h->mb.cache.intra4x4_pred_mode[x264_scan8[10]] );
M32( &i4x4[4] ) = pack8to32( h->mb.cache.intra4x4_pred_mode[x264_scan8[5] ],
h->mb.cache.intra4x4_pred_mode[x264_scan8[7] ],
h->mb.cache.intra4x4_pred_mode[x264_scan8[13] ], 0);
}
else if( !h->param.b_constrained_intra || IS_INTRA(i_mb_type) )
M64( i4x4 ) = I_PRED_4x4_DC * 0x0101010101010101ULL;
else
M64( i4x4 ) = (uint8_t)(-1) * 0x0101010101010101ULL;
if( i_mb_type == I_PCM )
{
h->mb.qp[i_mb_xy] = 0;
h->mb.i_last_dqp = 0;
h->mb.i_cbp_chroma = CHROMA444 ? 0 : 2;
h->mb.i_cbp_luma = 0xf;
h->mb.cbp[i_mb_xy] = (h->mb.i_cbp_chroma << 4) | h->mb.i_cbp_luma | 0x1700;
h->mb.b_transform_8x8 = 0;
for( int i = 0; i < 48; i++ )
h->mb.cache.non_zero_count[x264_scan8[i]] = h->param.b_cabac ? 1 : 16;
}
else
{
if( h->mb.i_type != I_16x16 && h->mb.i_cbp_luma == 0 && h->mb.i_cbp_chroma == 0 )
h->mb.i_qp = h->mb.i_last_qp;
h->mb.qp[i_mb_xy] = h->mb.i_qp;
h->mb.i_last_dqp = h->mb.i_qp - h->mb.i_last_qp;
h->mb.i_last_qp = h->mb.i_qp;
}
/* save non zero count */
CP32( &nnz[ 0+0*4], &h->mb.cache.non_zero_count[x264_scan8[ 0]] );
CP32( &nnz[ 0+1*4], &h->mb.cache.non_zero_count[x264_scan8[ 2]] );
CP32( &nnz[ 0+2*4], &h->mb.cache.non_zero_count[x264_scan8[ 8]] );
CP32( &nnz[ 0+3*4], &h->mb.cache.non_zero_count[x264_scan8[10]] );
CP32( &nnz[16+0*4], &h->mb.cache.non_zero_count[x264_scan8[16+0]] );
CP32( &nnz[16+1*4], &h->mb.cache.non_zero_count[x264_scan8[16+2]] );
CP32( &nnz[32+0*4], &h->mb.cache.non_zero_count[x264_scan8[32+0]] );
CP32( &nnz[32+1*4], &h->mb.cache.non_zero_count[x264_scan8[32+2]] );
if( CHROMA_FORMAT >= CHROMA_422 )
{
CP32( &nnz[16+2*4], &h->mb.cache.non_zero_count[x264_scan8[16+ 8]] );
CP32( &nnz[16+3*4], &h->mb.cache.non_zero_count[x264_scan8[16+10]] );
CP32( &nnz[32+2*4], &h->mb.cache.non_zero_count[x264_scan8[32+ 8]] );
CP32( &nnz[32+3*4], &h->mb.cache.non_zero_count[x264_scan8[32+10]] );
}
if( h->mb.i_cbp_luma == 0 && h->mb.i_type != I_8x8 )
h->mb.b_transform_8x8 = 0;
h->mb.mb_transform_size[i_mb_xy] = h->mb.b_transform_8x8;
if( h->sh.i_type != SLICE_TYPE_I )
{
int16_t (*mv0)[2] = &h->mb.mv[0][i_mb_4x4];
int8_t *ref0 = &h->mb.ref[0][i_mb_8x8];
if( !IS_INTRA( i_mb_type ) )
{
ref0[0+0*s8x8] = h->mb.cache.ref[0][x264_scan8[0]];
ref0[1+0*s8x8] = h->mb.cache.ref[0][x264_scan8[4]];
ref0[0+1*s8x8] = h->mb.cache.ref[0][x264_scan8[8]];
ref0[1+1*s8x8] = h->mb.cache.ref[0][x264_scan8[12]];
CP128( &mv0[0*s4x4], h->mb.cache.mv[0][x264_scan8[0]+8*0] );
CP128( &mv0[1*s4x4], h->mb.cache.mv[0][x264_scan8[0]+8*1] );
CP128( &mv0[2*s4x4], h->mb.cache.mv[0][x264_scan8[0]+8*2] );
CP128( &mv0[3*s4x4], h->mb.cache.mv[0][x264_scan8[0]+8*3] );
if( h->sh.i_type == SLICE_TYPE_B )
{
int16_t (*mv1)[2] = &h->mb.mv[1][i_mb_4x4];
int8_t *ref1 = &h->mb.ref[1][i_mb_8x8];
ref1[0+0*s8x8] = h->mb.cache.ref[1][x264_scan8[0]];
ref1[1+0*s8x8] = h->mb.cache.ref[1][x264_scan8[4]];
ref1[0+1*s8x8] = h->mb.cache.ref[1][x264_scan8[8]];
ref1[1+1*s8x8] = h->mb.cache.ref[1][x264_scan8[12]];
CP128( &mv1[0*s4x4], h->mb.cache.mv[1][x264_scan8[0]+8*0] );
CP128( &mv1[1*s4x4], h->mb.cache.mv[1][x264_scan8[0]+8*1] );
CP128( &mv1[2*s4x4], h->mb.cache.mv[1][x264_scan8[0]+8*2] );
CP128( &mv1[3*s4x4], h->mb.cache.mv[1][x264_scan8[0]+8*3] );
}
}
else
{
M16( &ref0[0*s8x8] ) = (uint8_t)(-1) * 0x0101;
M16( &ref0[1*s8x8] ) = (uint8_t)(-1) * 0x0101;
M128( &mv0[0*s4x4] ) = M128_ZERO;
M128( &mv0[1*s4x4] ) = M128_ZERO;
M128( &mv0[2*s4x4] ) = M128_ZERO;
M128( &mv0[3*s4x4] ) = M128_ZERO;
if( h->sh.i_type == SLICE_TYPE_B )
{
int16_t (*mv1)[2] = &h->mb.mv[1][i_mb_4x4];
int8_t *ref1 = &h->mb.ref[1][i_mb_8x8];
M16( &ref1[0*s8x8] ) = (uint8_t)(-1) * 0x0101;
M16( &ref1[1*s8x8] ) = (uint8_t)(-1) * 0x0101;
M128( &mv1[0*s4x4] ) = M128_ZERO;
M128( &mv1[1*s4x4] ) = M128_ZERO;
M128( &mv1[2*s4x4] ) = M128_ZERO;
M128( &mv1[3*s4x4] ) = M128_ZERO;
}
}
}
if( h->param.b_cabac )
{
uint8_t (*mvd0)[2] = h->mb.mvd[0][i_mb_xy];
if( IS_INTRA(i_mb_type) && i_mb_type != I_PCM )
h->mb.chroma_pred_mode[i_mb_xy] = x264_mb_chroma_pred_mode_fix[h->mb.i_chroma_pred_mode];
else
h->mb.chroma_pred_mode[i_mb_xy] = I_PRED_CHROMA_DC;
if( (0x3FF30 >> i_mb_type) & 1 ) /* !INTRA && !SKIP && !DIRECT */
{
CP64( mvd0[0], h->mb.cache.mvd[0][x264_scan8[10]] );
CP16( mvd0[4], h->mb.cache.mvd[0][x264_scan8[5 ]] );
CP16( mvd0[5], h->mb.cache.mvd[0][x264_scan8[7 ]] );
CP16( mvd0[6], h->mb.cache.mvd[0][x264_scan8[13]] );
if( h->sh.i_type == SLICE_TYPE_B )
{
uint8_t (*mvd1)[2] = h->mb.mvd[1][i_mb_xy];
CP64( mvd1[0], h->mb.cache.mvd[1][x264_scan8[10]] );
CP16( mvd1[4], h->mb.cache.mvd[1][x264_scan8[5 ]] );
CP16( mvd1[5], h->mb.cache.mvd[1][x264_scan8[7 ]] );
CP16( mvd1[6], h->mb.cache.mvd[1][x264_scan8[13]] );
}
}
else
{
M128( mvd0[0] ) = M128_ZERO;
if( h->sh.i_type == SLICE_TYPE_B )
{
uint8_t (*mvd1)[2] = h->mb.mvd[1][i_mb_xy];
M128( mvd1[0] ) = M128_ZERO;
}
}
if( h->sh.i_type == SLICE_TYPE_B )
{
if( i_mb_type == B_SKIP || i_mb_type == B_DIRECT )
h->mb.skipbp[i_mb_xy] = 0xf;
else if( i_mb_type == B_8x8 )
{
int skipbp = ( h->mb.i_sub_partition[0] == D_DIRECT_8x8 ) << 0;
skipbp |= ( h->mb.i_sub_partition[1] == D_DIRECT_8x8 ) << 1;
skipbp |= ( h->mb.i_sub_partition[2] == D_DIRECT_8x8 ) << 2;
skipbp |= ( h->mb.i_sub_partition[3] == D_DIRECT_8x8 ) << 3;
h->mb.skipbp[i_mb_xy] = skipbp;
}
else
h->mb.skipbp[i_mb_xy] = 0;
}
}
}
void x264_macroblock_bipred_init( x264_t *h )
{
for( int mbfield = 0; mbfield <= SLICE_MBAFF; mbfield++ )
for( int field = 0; field <= SLICE_MBAFF; field++ )
for( int i_ref0 = 0; i_ref0 < (h->i_ref[0]<<mbfield); i_ref0++ )
{
x264_frame_t *l0 = h->fref[0][i_ref0>>mbfield];
int poc0 = l0->i_poc + mbfield*l0->i_delta_poc[field^(i_ref0&1)];
for( int i_ref1 = 0; i_ref1 < (h->i_ref[1]<<mbfield); i_ref1++ )
{
x264_frame_t *l1 = h->fref[1][i_ref1>>mbfield];
int cur_poc = h->fdec->i_poc + mbfield*h->fdec->i_delta_poc[field];
int poc1 = l1->i_poc + mbfield*l1->i_delta_poc[field^(i_ref1&1)];
int td = x264_clip3( poc1 - poc0, -128, 127 );
if( td == 0 /* || pic0 is a long-term ref */ )
{
h->mb.dist_scale_factor_buf[mbfield][field][i_ref0][i_ref1] = 256;
h->mb.bipred_weight_buf[mbfield][field][i_ref0][i_ref1] = 32;
}
else
{
int tb = x264_clip3( cur_poc - poc0, -128, 127 );
int tx = (16384 + (abs(td) >> 1)) / td;
int dist_scale_factor = x264_clip3( (tb * tx + 32) >> 6, -1024, 1023 );
h->mb.dist_scale_factor_buf[mbfield][field][i_ref0][i_ref1] = dist_scale_factor;
dist_scale_factor >>= 2;
if( h->param.analyse.b_weighted_bipred /* && pic1 is not a long-term ref */
&& dist_scale_factor >= -64
&& dist_scale_factor <= 128 )
{
h->mb.bipred_weight_buf[mbfield][field][i_ref0][i_ref1] = 64 - dist_scale_factor;
// ssse3 implementation of biweight doesn't support the extrema.
// if we ever generate them, we'll have to drop that optimization.
assert( dist_scale_factor >= -63 && dist_scale_factor <= 127 );
}
else
h->mb.bipred_weight_buf[mbfield][field][i_ref0][i_ref1] = 32;
}
}
}
}