2025-04-28 08:47:28 +08:00

4604 lines
182 KiB
C

/*****************************************************************************
* encoder.c: top-level encoder functions
*****************************************************************************
* Copyright (C) 2003-2025 x264 project
*
* Authors: Laurent Aimar <fenrir@via.ecp.fr>
* Loren Merritt <lorenm@u.washington.edu>
* Fiona Glaser <fiona@x264.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#include "common/common.h"
#include "set.h"
#include "analyse.h"
#include "ratecontrol.h"
#include "macroblock.h"
#include "me.h"
#if HAVE_INTEL_DISPATCHER
#include "extras/intel_dispatcher.h"
#endif
//#define DEBUG_MB_TYPE
#define bs_write_ue bs_write_ue_big
// forward declaration needed for template usage
void x264_nal_encode( x264_t *h, uint8_t *dst, x264_nal_t *nal );
void x264_macroblock_cache_load_progressive( x264_t *h, int i_mb_x, int i_mb_y );
static int encoder_frame_end( x264_t *h, x264_t *thread_current,
x264_nal_t **pp_nal, int *pi_nal,
x264_picture_t *pic_out );
/****************************************************************************
*
******************************* x264 libs **********************************
*
****************************************************************************/
static double calc_psnr( double sqe, double size )
{
double mse = sqe / (PIXEL_MAX*PIXEL_MAX * size);
if( mse <= 0.0000000001 ) /* Max 100dB */
return 100;
return -10.0 * log10( mse );
}
static double calc_ssim_db( double ssim )
{
double inv_ssim = 1 - ssim;
if( inv_ssim <= 0.0000000001 ) /* Max 100dB */
return 100;
return -10.0 * log10( inv_ssim );
}
static int threadpool_wait_all( x264_t *h )
{
for( int i = 0; i < h->param.i_threads; i++ )
if( h->thread[i]->b_thread_active )
{
h->thread[i]->b_thread_active = 0;
if( (intptr_t)x264_threadpool_wait( h->threadpool, h->thread[i] ) < 0 )
return -1;
}
return 0;
}
static void frame_dump( x264_t *h )
{
FILE *f = x264_fopen( h->param.psz_dump_yuv, "r+b" );
if( !f )
return;
/* Wait for the threads to finish deblocking */
if( h->param.b_sliced_threads )
threadpool_wait_all( h );
/* Write the frame in display order */
int frame_size = FRAME_SIZE( h->param.i_height * h->param.i_width * SIZEOF_PIXEL );
if( !fseek( f, (int64_t)h->fdec->i_frame * frame_size, SEEK_SET ) )
{
for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ )
for( int y = 0; y < h->param.i_height; y++ )
fwrite( &h->fdec->plane[p][y*h->fdec->i_stride[p]], SIZEOF_PIXEL, h->param.i_width, f );
if( CHROMA_FORMAT == CHROMA_420 || CHROMA_FORMAT == CHROMA_422 )
{
int cw = h->param.i_width>>1;
int ch = h->param.i_height>>CHROMA_V_SHIFT;
pixel *planeu = x264_malloc( 2 * (cw*ch*SIZEOF_PIXEL + 32) );
if( planeu )
{
pixel *planev = planeu + cw*ch + 32/SIZEOF_PIXEL;
h->mc.plane_copy_deinterleave( planeu, cw, planev, cw, h->fdec->plane[1], h->fdec->i_stride[1], cw, ch );
fwrite( planeu, 1, cw*ch*SIZEOF_PIXEL, f );
fwrite( planev, 1, cw*ch*SIZEOF_PIXEL, f );
x264_free( planeu );
}
}
}
fclose( f );
}
/* Fill "default" values */
static void slice_header_init( x264_t *h, x264_slice_header_t *sh,
x264_sps_t *sps, x264_pps_t *pps,
int i_idr_pic_id, int i_frame, int i_qp )
{
x264_param_t *param = &h->param;
/* First we fill all fields */
sh->sps = sps;
sh->pps = pps;
sh->i_first_mb = 0;
sh->i_last_mb = h->mb.i_mb_count - 1;
sh->i_pps_id = pps->i_id;
sh->i_frame_num = i_frame;
sh->b_mbaff = PARAM_INTERLACED;
sh->b_field_pic = 0; /* no field support for now */
sh->b_bottom_field = 0; /* not yet used */
sh->i_idr_pic_id = i_idr_pic_id;
/* poc stuff, fixed later */
sh->i_poc = 0;
sh->i_delta_poc_bottom = 0;
sh->i_delta_poc[0] = 0;
sh->i_delta_poc[1] = 0;
sh->i_redundant_pic_cnt = 0;
h->mb.b_direct_auto_write = h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO
&& h->param.i_bframe
&& ( h->param.rc.b_stat_write || !h->param.rc.b_stat_read );
if( !h->mb.b_direct_auto_read && sh->i_type == SLICE_TYPE_B )
{
if( h->fref[1][0]->i_poc_l0ref0 == h->fref[0][0]->i_poc )
{
if( h->mb.b_direct_auto_write )
sh->b_direct_spatial_mv_pred = ( h->stat.i_direct_score[1] > h->stat.i_direct_score[0] );
else
sh->b_direct_spatial_mv_pred = ( param->analyse.i_direct_mv_pred == X264_DIRECT_PRED_SPATIAL );
}
else
{
h->mb.b_direct_auto_write = 0;
sh->b_direct_spatial_mv_pred = 1;
}
}
/* else b_direct_spatial_mv_pred was read from the 2pass statsfile */
sh->b_num_ref_idx_override = 0;
sh->i_num_ref_idx_l0_active = 1;
sh->i_num_ref_idx_l1_active = 1;
sh->b_ref_pic_list_reordering[0] = h->b_ref_reorder[0];
sh->b_ref_pic_list_reordering[1] = h->b_ref_reorder[1];
/* If the ref list isn't in the default order, construct reordering header */
for( int list = 0; list < 2; list++ )
{
if( sh->b_ref_pic_list_reordering[list] )
{
int pred_frame_num = i_frame;
for( int i = 0; i < h->i_ref[list]; i++ )
{
int diff = h->fref[list][i]->i_frame_num - pred_frame_num;
sh->ref_pic_list_order[list][i].idc = ( diff > 0 );
sh->ref_pic_list_order[list][i].arg = (abs(diff) - 1) & ((1 << sps->i_log2_max_frame_num) - 1);
pred_frame_num = h->fref[list][i]->i_frame_num;
}
}
}
sh->i_cabac_init_idc = param->i_cabac_init_idc;
sh->i_qp = SPEC_QP(i_qp);
sh->i_qp_delta = sh->i_qp - pps->i_pic_init_qp;
sh->b_sp_for_swidth = 0;
sh->i_qs_delta = 0;
int deblock_thresh = i_qp + 2 * X264_MIN(param->i_deblocking_filter_alphac0, param->i_deblocking_filter_beta);
/* If effective qp <= 15, deblocking would have no effect anyway */
if( param->b_deblocking_filter && (h->mb.b_variable_qp || 15 < deblock_thresh ) )
sh->i_disable_deblocking_filter_idc = param->b_sliced_threads ? 2 : 0;
else
sh->i_disable_deblocking_filter_idc = 1;
sh->i_alpha_c0_offset = param->i_deblocking_filter_alphac0 * 2;
sh->i_beta_offset = param->i_deblocking_filter_beta * 2;
}
static void slice_header_write( bs_t *s, x264_slice_header_t *sh, int i_nal_ref_idc )
{
if( sh->b_mbaff )
{
int first_x = sh->i_first_mb % sh->sps->i_mb_width;
int first_y = sh->i_first_mb / sh->sps->i_mb_width;
assert( (first_y&1) == 0 );
bs_write_ue( s, (2*first_x + sh->sps->i_mb_width*(first_y&~1) + (first_y&1)) >> 1 );
}
else
bs_write_ue( s, sh->i_first_mb );
bs_write_ue( s, sh->i_type + 5 ); /* same type things */
bs_write_ue( s, sh->i_pps_id );
bs_write( s, sh->sps->i_log2_max_frame_num, sh->i_frame_num & ((1<<sh->sps->i_log2_max_frame_num)-1) );
if( !sh->sps->b_frame_mbs_only )
{
bs_write1( s, sh->b_field_pic );
if( sh->b_field_pic )
bs_write1( s, sh->b_bottom_field );
}
if( sh->i_idr_pic_id >= 0 ) /* NAL IDR */
bs_write_ue( s, sh->i_idr_pic_id );
if( sh->sps->i_poc_type == 0 )
{
bs_write( s, sh->sps->i_log2_max_poc_lsb, sh->i_poc & ((1<<sh->sps->i_log2_max_poc_lsb)-1) );
if( sh->pps->b_pic_order && !sh->b_field_pic )
bs_write_se( s, sh->i_delta_poc_bottom );
}
if( sh->pps->b_redundant_pic_cnt )
bs_write_ue( s, sh->i_redundant_pic_cnt );
if( sh->i_type == SLICE_TYPE_B )
bs_write1( s, sh->b_direct_spatial_mv_pred );
if( sh->i_type == SLICE_TYPE_P || sh->i_type == SLICE_TYPE_B )
{
bs_write1( s, sh->b_num_ref_idx_override );
if( sh->b_num_ref_idx_override )
{
bs_write_ue( s, sh->i_num_ref_idx_l0_active - 1 );
if( sh->i_type == SLICE_TYPE_B )
bs_write_ue( s, sh->i_num_ref_idx_l1_active - 1 );
}
}
/* ref pic list reordering */
if( sh->i_type != SLICE_TYPE_I )
{
bs_write1( s, sh->b_ref_pic_list_reordering[0] );
if( sh->b_ref_pic_list_reordering[0] )
{
for( int i = 0; i < sh->i_num_ref_idx_l0_active; i++ )
{
bs_write_ue( s, sh->ref_pic_list_order[0][i].idc );
bs_write_ue( s, sh->ref_pic_list_order[0][i].arg );
}
bs_write_ue( s, 3 );
}
}
if( sh->i_type == SLICE_TYPE_B )
{
bs_write1( s, sh->b_ref_pic_list_reordering[1] );
if( sh->b_ref_pic_list_reordering[1] )
{
for( int i = 0; i < sh->i_num_ref_idx_l1_active; i++ )
{
bs_write_ue( s, sh->ref_pic_list_order[1][i].idc );
bs_write_ue( s, sh->ref_pic_list_order[1][i].arg );
}
bs_write_ue( s, 3 );
}
}
sh->b_weighted_pred = 0;
if( sh->pps->b_weighted_pred && sh->i_type == SLICE_TYPE_P )
{
sh->b_weighted_pred = sh->weight[0][0].weightfn || sh->weight[0][1].weightfn || sh->weight[0][2].weightfn;
/* pred_weight_table() */
bs_write_ue( s, sh->weight[0][0].i_denom ); /* luma_log2_weight_denom */
if( sh->sps->i_chroma_format_idc )
bs_write_ue( s, sh->weight[0][1].i_denom ); /* chroma_log2_weight_denom */
for( int i = 0; i < sh->i_num_ref_idx_l0_active; i++ )
{
int luma_weight_l0_flag = !!sh->weight[i][0].weightfn;
bs_write1( s, luma_weight_l0_flag );
if( luma_weight_l0_flag )
{
bs_write_se( s, sh->weight[i][0].i_scale );
bs_write_se( s, sh->weight[i][0].i_offset );
}
if( sh->sps->i_chroma_format_idc )
{
int chroma_weight_l0_flag = sh->weight[i][1].weightfn || sh->weight[i][2].weightfn;
bs_write1( s, chroma_weight_l0_flag );
if( chroma_weight_l0_flag )
{
for( int j = 1; j < 3; j++ )
{
bs_write_se( s, sh->weight[i][j].i_scale );
bs_write_se( s, sh->weight[i][j].i_offset );
}
}
}
}
}
else if( sh->pps->b_weighted_bipred == 1 && sh->i_type == SLICE_TYPE_B )
{
/* TODO */
}
if( i_nal_ref_idc != 0 )
{
if( sh->i_idr_pic_id >= 0 )
{
bs_write1( s, 0 ); /* no output of prior pics flag */
bs_write1( s, 0 ); /* long term reference flag */
}
else
{
bs_write1( s, sh->i_mmco_command_count > 0 ); /* adaptive_ref_pic_marking_mode_flag */
if( sh->i_mmco_command_count > 0 )
{
for( int i = 0; i < sh->i_mmco_command_count; i++ )
{
bs_write_ue( s, 1 ); /* mark short term ref as unused */
bs_write_ue( s, sh->mmco[i].i_difference_of_pic_nums - 1 );
}
bs_write_ue( s, 0 ); /* end command list */
}
}
}
if( sh->pps->b_cabac && sh->i_type != SLICE_TYPE_I )
bs_write_ue( s, sh->i_cabac_init_idc );
bs_write_se( s, sh->i_qp_delta ); /* slice qp delta */
if( sh->pps->b_deblocking_filter_control )
{
bs_write_ue( s, sh->i_disable_deblocking_filter_idc );
if( sh->i_disable_deblocking_filter_idc != 1 )
{
bs_write_se( s, sh->i_alpha_c0_offset >> 1 );
bs_write_se( s, sh->i_beta_offset >> 1 );
}
}
}
/* If we are within a reasonable distance of the end of the memory allocated for the bitstream, */
/* reallocate, adding an arbitrary amount of space. */
static int bitstream_check_buffer_internal( x264_t *h, int size, int b_cabac, int i_nal )
{
if( (b_cabac && (h->cabac.p_end - h->cabac.p < size)) ||
(h->out.bs.p_end - h->out.bs.p < size) )
{
if( size > INT_MAX - h->out.i_bitstream )
return -1;
int buf_size = h->out.i_bitstream + size;
uint8_t *buf = x264_malloc( buf_size );
if( !buf )
return -1;
int aligned_size = h->out.i_bitstream & ~15;
h->mc.memcpy_aligned( buf, h->out.p_bitstream, aligned_size );
memcpy( buf + aligned_size, h->out.p_bitstream + aligned_size, h->out.i_bitstream - aligned_size );
intptr_t delta = buf - h->out.p_bitstream;
h->out.bs.p_start += delta;
h->out.bs.p += delta;
h->out.bs.p_end = buf + buf_size;
h->cabac.p_start += delta;
h->cabac.p += delta;
h->cabac.p_end = buf + buf_size;
for( int i = 0; i <= i_nal; i++ )
h->out.nal[i].p_payload += delta;
x264_free( h->out.p_bitstream );
h->out.p_bitstream = buf;
h->out.i_bitstream = buf_size;
}
return 0;
}
static int bitstream_check_buffer( x264_t *h )
{
int max_row_size = (2500 << SLICE_MBAFF) * h->mb.i_mb_width;
return bitstream_check_buffer_internal( h, max_row_size, h->param.b_cabac, h->out.i_nal );
}
static int bitstream_check_buffer_filler( x264_t *h, int filler )
{
filler += 32; // add padding for safety
return bitstream_check_buffer_internal( h, filler, 0, -1 );
}
/****************************************************************************
*
****************************************************************************
****************************** External API*********************************
****************************************************************************
*
****************************************************************************/
static int validate_parameters( x264_t *h, int b_open )
{
if( !h->param.pf_log )
{
x264_log_internal( X264_LOG_ERROR, "pf_log not set! did you forget to call x264_param_default?\n" );
return -1;
}
#if HAVE_MMX
if( b_open )
{
uint32_t cpuflags = x264_cpu_detect();
int fail = 0;
#ifdef __SSE__
if( !(cpuflags & X264_CPU_SSE) )
{
x264_log( h, X264_LOG_ERROR, "your cpu does not support SSE1, but x264 was compiled with asm\n");
fail = 1;
}
#else
if( !(cpuflags & X264_CPU_MMX2) )
{
x264_log( h, X264_LOG_ERROR, "your cpu does not support MMXEXT, but x264 was compiled with asm\n");
fail = 1;
}
#endif
if( fail )
{
x264_log( h, X264_LOG_ERROR, "to run x264, recompile without asm (configure --disable-asm)\n");
return -1;
}
}
#endif
#if HAVE_INTERLACED
h->param.b_interlaced = !!PARAM_INTERLACED;
#else
if( h->param.b_interlaced )
{
x264_log( h, X264_LOG_ERROR, "not compiled with interlaced support\n" );
return -1;
}
#endif
#define MAX_RESOLUTION 16384
if( h->param.i_width <= 0 || h->param.i_height <= 0 ||
h->param.i_width > MAX_RESOLUTION || h->param.i_height > MAX_RESOLUTION )
{
x264_log( h, X264_LOG_ERROR, "invalid width x height (%dx%d)\n",
h->param.i_width, h->param.i_height );
return -1;
}
int i_csp = h->param.i_csp & X264_CSP_MASK;
#if X264_CHROMA_FORMAT
if( CHROMA_FORMAT != CHROMA_400 && i_csp == X264_CSP_I400 )
{
x264_log( h, X264_LOG_ERROR, "not compiled with 4:0:0 support\n" );
return -1;
}
else if( CHROMA_FORMAT != CHROMA_420 && i_csp >= X264_CSP_I420 && i_csp < X264_CSP_I422 )
{
x264_log( h, X264_LOG_ERROR, "not compiled with 4:2:0 support\n" );
return -1;
}
else if( CHROMA_FORMAT != CHROMA_422 && i_csp >= X264_CSP_I422 && i_csp < X264_CSP_I444 )
{
x264_log( h, X264_LOG_ERROR, "not compiled with 4:2:2 support\n" );
return -1;
}
else if( CHROMA_FORMAT != CHROMA_444 && i_csp >= X264_CSP_I444 && i_csp <= X264_CSP_RGB )
{
x264_log( h, X264_LOG_ERROR, "not compiled with 4:4:4 support\n" );
return -1;
}
#endif
if( i_csp <= X264_CSP_NONE || i_csp >= X264_CSP_MAX )
{
x264_log( h, X264_LOG_ERROR, "invalid CSP (only I400/I420/YV12/NV12/NV21/I422/YV16/NV16/YUYV/UYVY/"
"I444/YV24/BGR/BGRA/RGB supported)\n" );
return -1;
}
int w_mod = 1;
int h_mod = 1 << (PARAM_INTERLACED || h->param.b_fake_interlaced);
if( i_csp == X264_CSP_I400 )
{
h->param.analyse.i_chroma_qp_offset = 0;
h->param.analyse.b_chroma_me = 0;
h->param.vui.i_colmatrix = 2; /* undefined */
}
else if( i_csp < X264_CSP_I444 )
{
w_mod = 2;
if( i_csp < X264_CSP_I422 )
h_mod *= 2;
}
if( h->param.i_width % w_mod )
{
x264_log( h, X264_LOG_ERROR, "width not divisible by %d (%dx%d)\n",
w_mod, h->param.i_width, h->param.i_height );
return -1;
}
if( h->param.i_height % h_mod )
{
x264_log( h, X264_LOG_ERROR, "height not divisible by %d (%dx%d)\n",
h_mod, h->param.i_width, h->param.i_height );
return -1;
}
if( h->param.crop_rect.i_left < 0 || h->param.crop_rect.i_left >= h->param.i_width ||
h->param.crop_rect.i_right < 0 || h->param.crop_rect.i_right >= h->param.i_width ||
h->param.crop_rect.i_top < 0 || h->param.crop_rect.i_top >= h->param.i_height ||
h->param.crop_rect.i_bottom < 0 || h->param.crop_rect.i_bottom >= h->param.i_height ||
h->param.crop_rect.i_left + h->param.crop_rect.i_right >= h->param.i_width ||
h->param.crop_rect.i_top + h->param.crop_rect.i_bottom >= h->param.i_height )
{
x264_log( h, X264_LOG_ERROR, "invalid crop-rect %d,%d,%d,%d\n", h->param.crop_rect.i_left,
h->param.crop_rect.i_top, h->param.crop_rect.i_right, h->param.crop_rect.i_bottom );
return -1;
}
if( h->param.crop_rect.i_left % w_mod || h->param.crop_rect.i_right % w_mod ||
h->param.crop_rect.i_top % h_mod || h->param.crop_rect.i_bottom % h_mod )
{
x264_log( h, X264_LOG_ERROR, "crop-rect %d,%d,%d,%d not divisible by %dx%d\n", h->param.crop_rect.i_left,
h->param.crop_rect.i_top, h->param.crop_rect.i_right, h->param.crop_rect.i_bottom, w_mod, h_mod );
return -1;
}
if( h->param.vui.i_sar_width <= 0 || h->param.vui.i_sar_height <= 0 )
{
h->param.vui.i_sar_width = 0;
h->param.vui.i_sar_height = 0;
}
if( h->param.i_threads == X264_THREADS_AUTO )
{
h->param.i_threads = x264_cpu_num_processors() * (h->param.b_sliced_threads?2:3)/2;
/* Avoid too many threads as they don't improve performance and
* complicate VBV. Capped at an arbitrary 2 rows per thread. */
int max_threads = X264_MAX( 1, (h->param.i_height+15)/16 / 2 );
h->param.i_threads = X264_MIN( h->param.i_threads, max_threads );
}
int max_sliced_threads = X264_MAX( 1, (h->param.i_height+15)/16 / 4 );
if( h->param.i_threads > 1 )
{
#if !HAVE_THREAD
x264_log( h, X264_LOG_WARNING, "not compiled with thread support!\n");
h->param.i_threads = 1;
#endif
/* Avoid absurdly small thread slices as they can reduce performance
* and VBV compliance. Capped at an arbitrary 4 rows per thread. */
if( h->param.b_sliced_threads )
h->param.i_threads = X264_MIN( h->param.i_threads, max_sliced_threads );
}
h->param.i_threads = x264_clip3( h->param.i_threads, 1, X264_THREAD_MAX );
if( h->param.i_threads == 1 )
{
h->param.b_sliced_threads = 0;
h->param.i_lookahead_threads = 1;
}
h->i_thread_frames = h->param.b_sliced_threads ? 1 : h->param.i_threads;
if( h->i_thread_frames > 1 )
h->param.nalu_process = NULL;
if( h->param.b_opencl )
{
#if !HAVE_OPENCL
x264_log( h, X264_LOG_WARNING, "OpenCL: not compiled with OpenCL support, disabling\n" );
h->param.b_opencl = 0;
#elif BIT_DEPTH > 8
x264_log( h, X264_LOG_WARNING, "OpenCL lookahead does not support high bit depth, disabling opencl\n" );
h->param.b_opencl = 0;
#else
if( h->param.i_width < 32 || h->param.i_height < 32 )
{
x264_log( h, X264_LOG_WARNING, "OpenCL: frame size is too small, disabling opencl\n" );
h->param.b_opencl = 0;
}
#endif
if( h->param.opencl_device_id && h->param.i_opencl_device )
{
x264_log( h, X264_LOG_WARNING, "OpenCL: device id and device skip count configured; dropping skip\n" );
h->param.i_opencl_device = 0;
}
}
h->param.i_keyint_max = x264_clip3( h->param.i_keyint_max, 1, X264_KEYINT_MAX_INFINITE );
if( h->param.i_keyint_max == 1 )
{
h->param.b_intra_refresh = 0;
h->param.analyse.i_weighted_pred = 0;
h->param.i_frame_reference = 1;
h->param.i_dpb_size = 1;
}
if( h->param.i_frame_packing < -1 || h->param.i_frame_packing > 7 )
{
x264_log( h, X264_LOG_WARNING, "ignoring unknown frame packing value\n" );
h->param.i_frame_packing = -1;
}
if( h->param.i_frame_packing == 7 &&
((h->param.i_width - h->param.crop_rect.i_left - h->param.crop_rect.i_right) % 3 ||
(h->param.i_height - h->param.crop_rect.i_top - h->param.crop_rect.i_bottom) % 3) )
{
x264_log( h, X264_LOG_ERROR, "cropped resolution %dx%d not compatible with tile format frame packing\n",
h->param.i_width - h->param.crop_rect.i_left - h->param.crop_rect.i_right,
h->param.i_height - h->param.crop_rect.i_top - h->param.crop_rect.i_bottom );
return -1;
}
if( h->param.mastering_display.b_mastering_display )
{
if( h->param.mastering_display.i_green_x > UINT16_MAX || h->param.mastering_display.i_green_x < 0 ||
h->param.mastering_display.i_green_y > UINT16_MAX || h->param.mastering_display.i_green_y < 0 ||
h->param.mastering_display.i_blue_x > UINT16_MAX || h->param.mastering_display.i_blue_x < 0 ||
h->param.mastering_display.i_blue_y > UINT16_MAX || h->param.mastering_display.i_blue_y < 0 ||
h->param.mastering_display.i_red_x > UINT16_MAX || h->param.mastering_display.i_red_x < 0 ||
h->param.mastering_display.i_red_y > UINT16_MAX || h->param.mastering_display.i_red_y < 0 ||
h->param.mastering_display.i_white_x > UINT16_MAX || h->param.mastering_display.i_white_x < 0 ||
h->param.mastering_display.i_white_y > UINT16_MAX || h->param.mastering_display.i_white_y < 0 )
{
x264_log( h, X264_LOG_ERROR, "mastering display xy coordinates out of range [0,%u]\n", UINT16_MAX );
return -1;
}
if( h->param.mastering_display.i_display_max > UINT32_MAX || h->param.mastering_display.i_display_max < 0 ||
h->param.mastering_display.i_display_min > UINT32_MAX || h->param.mastering_display.i_display_min < 0 )
{
x264_log( h, X264_LOG_ERROR, "mastering display brightness out of range [0,%u]\n", UINT32_MAX );
return -1;
}
if( h->param.mastering_display.i_display_min == 50000 && h->param.mastering_display.i_display_max == 50000 )
{
x264_log( h, X264_LOG_ERROR, "mastering display min and max brightness cannot both be 50000\n" );
return -1;
}
}
if( h->param.content_light_level.b_cll &&
(h->param.content_light_level.i_max_cll > UINT16_MAX || h->param.content_light_level.i_max_cll < 0 ||
h->param.content_light_level.i_max_fall > UINT16_MAX || h->param.content_light_level.i_max_fall < 0) )
{
x264_log( h, X264_LOG_ERROR, "content light levels out of range [0,%u]\n", UINT16_MAX );
return -1;
}
/* Detect default ffmpeg settings and terminate with an error. */
if( b_open )
{
int score = 0;
score += h->param.analyse.i_me_range == 0;
score += h->param.rc.i_qp_step == 3;
score += h->param.i_keyint_max == 12;
score += h->param.rc.i_qp_min == 2;
score += h->param.rc.i_qp_max == 31;
score += h->param.rc.f_qcompress == 0.5;
score += fabs(h->param.rc.f_ip_factor - 1.25) < 0.01;
score += fabs(h->param.rc.f_pb_factor - 1.25) < 0.01;
score += h->param.analyse.inter == 0 && h->param.analyse.i_subpel_refine == 8;
if( score >= 5 )
{
x264_log( h, X264_LOG_ERROR, "broken ffmpeg default settings detected\n" );
x264_log( h, X264_LOG_ERROR, "use an encoding preset (e.g. -vpre medium)\n" );
x264_log( h, X264_LOG_ERROR, "preset usage: -vpre <speed> -vpre <profile>\n" );
x264_log( h, X264_LOG_ERROR, "speed presets are listed in x264 --help\n" );
x264_log( h, X264_LOG_ERROR, "profile is optional; x264 defaults to high\n" );
return -1;
}
}
if( h->param.rc.i_rc_method < 0 || h->param.rc.i_rc_method > 2 )
{
x264_log( h, X264_LOG_ERROR, "no ratecontrol method specified\n" );
return -1;
}
if( PARAM_INTERLACED )
h->param.b_pic_struct = 1;
if( h->param.i_avcintra_class )
{
if( BIT_DEPTH != 10 )
{
x264_log( h, X264_LOG_ERROR, "%2d-bit AVC-Intra is not widely compatible\n", BIT_DEPTH );
x264_log( h, X264_LOG_ERROR, "10-bit x264 is required to encode AVC-Intra\n" );
return -1;
}
int type = h->param.i_avcintra_class == 480 ? 4 :
h->param.i_avcintra_class == 300 ? 3 :
h->param.i_avcintra_class == 200 ? 2 :
h->param.i_avcintra_class == 100 ? 1 :
h->param.i_avcintra_class == 50 ? 0 : -1;
if( type < 0 )
{
x264_log( h, X264_LOG_ERROR, "Invalid AVC-Intra class\n" );
return -1;
}
else if( type > 2 && h->param.i_avcintra_flavor != X264_AVCINTRA_FLAVOR_SONY )
{
x264_log( h, X264_LOG_ERROR, "AVC-Intra %d only supported by Sony XAVC flavor\n", h->param.i_avcintra_class );
return -1;
}
/* [50/100/200/300/480][res][fps] */
static const struct
{
uint16_t fps_num;
uint16_t fps_den;
uint8_t interlaced;
uint16_t frame_size;
const uint8_t *cqm_4iy;
const uint8_t *cqm_4ic;
const uint8_t *cqm_8iy;
} avcintra_lut[5][2][7] =
{
{{{ 60000, 1001, 0, 912, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy },
{ 50, 1, 0, 1100, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy },
{ 30000, 1001, 0, 912, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy },
{ 25, 1, 0, 1100, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy },
{ 24000, 1001, 0, 912, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }},
{{ 30000, 1001, 1, 1820, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_1080i_8iy },
{ 25, 1, 1, 2196, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_1080i_8iy },
{ 60000, 1001, 0, 1820, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy },
{ 30000, 1001, 0, 1820, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy },
{ 50, 1, 0, 2196, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy },
{ 25, 1, 0, 2196, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy },
{ 24000, 1001, 0, 1820, x264_cqm_jvt4i, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }}},
{{{ 60000, 1001, 0, 1848, x264_cqm_jvt4i, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy },
{ 50, 1, 0, 2224, x264_cqm_jvt4i, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy },
{ 30000, 1001, 0, 1848, x264_cqm_jvt4i, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy },
{ 25, 1, 0, 2224, x264_cqm_jvt4i, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy },
{ 24000, 1001, 0, 1848, x264_cqm_jvt4i, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }},
{{ 30000, 1001, 1, 3692, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080i_8iy },
{ 25, 1, 1, 4444, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080i_8iy },
{ 60000, 1001, 0, 3692, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy },
{ 30000, 1001, 0, 3692, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy },
{ 50, 1, 0, 4444, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy },
{ 25, 1, 0, 4444, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy },
{ 24000, 1001, 0, 3692, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }}},
{{{ 60000, 1001, 0, 3724, x264_cqm_jvt4i, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy },
{ 50, 1, 0, 4472, x264_cqm_jvt4i, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }},
{{ 30000, 1001, 1, 7444, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080i_8iy },
{ 25, 1, 1, 8940, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080i_8iy },
{ 60000, 1001, 0, 7444, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy },
{ 30000, 1001, 0, 7444, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy },
{ 50, 1, 0, 8940, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy },
{ 25, 1, 0, 8940, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy },
{ 24000, 1001, 0, 7444, x264_cqm_jvt4i, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }}},
{{{ 60000, 1001, 0, 9844, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy },
{ 50, 1, 0, 9844, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy },
{ 30000, 1001, 0, 9844, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy },
{ 25, 1, 0, 9844, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy },
{ 24000, 1001, 0, 9844, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy }}},
{{{ 60000, 1001, 0, 15700, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy },
{ 50, 1, 0, 15700, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy },
{ 30000, 1001, 0, 15700, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy },
{ 25, 1, 0, 15700, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy },
{ 24000, 1001, 0, 15700, x264_cqm_avci300_2160p_4iy, x264_cqm_avci300_2160p_4ic, x264_cqm_avci300_2160p_8iy }}}
};
int res = -1;
if( i_csp >= X264_CSP_I420 && i_csp < X264_CSP_I422 && !type )
{
if( h->param.i_width == 1440 && h->param.i_height == 1080 ) res = 1;
else if( h->param.i_width == 960 && h->param.i_height == 720 ) res = 0;
}
else if( i_csp >= X264_CSP_I422 && i_csp < X264_CSP_I444 && type )
{
if( type < 3 )
{
if( h->param.i_width == 1920 && h->param.i_height == 1080 ) res = 1;
else if( h->param.i_width == 2048 && h->param.i_height == 1080 ) res = 1;
else if( h->param.i_width == 1280 && h->param.i_height == 720 ) res = 0;
}
else
{
if( h->param.i_width == 3840 && h->param.i_height == 2160 ) res = 0;
else if( h->param.i_width == 4096 && h->param.i_height == 2160 ) res = 0;
}
}
else
{
x264_log( h, X264_LOG_ERROR, "Invalid colorspace for AVC-Intra %d\n", h->param.i_avcintra_class );
return -1;
}
if( res < 0 )
{
x264_log( h, X264_LOG_ERROR, "Resolution %dx%d invalid for AVC-Intra %d\n",
h->param.i_width, h->param.i_height, h->param.i_avcintra_class );
return -1;
}
if( h->param.nalu_process )
{
x264_log( h, X264_LOG_ERROR, "nalu_process is not supported in AVC-Intra mode\n" );
return -1;
}
if( !h->param.b_repeat_headers )
{
x264_log( h, X264_LOG_ERROR, "Separate headers not supported in AVC-Intra mode\n" );
return -1;
}
int i;
uint32_t fps_num = h->param.i_fps_num, fps_den = h->param.i_fps_den;
x264_reduce_fraction( &fps_num, &fps_den );
for( i = 0; i < 7; i++ )
{
if( avcintra_lut[type][res][i].fps_num == fps_num &&
avcintra_lut[type][res][i].fps_den == fps_den &&
avcintra_lut[type][res][i].interlaced == PARAM_INTERLACED )
{
break;
}
}
if( i == 7 )
{
x264_log( h, X264_LOG_ERROR, "FPS %d/%d%c not compatible with AVC-Intra %d\n",
h->param.i_fps_num, h->param.i_fps_den, PARAM_INTERLACED ? 'i' : 'p', h->param.i_avcintra_class );
return -1;
}
h->param.i_keyint_max = 1;
h->param.b_intra_refresh = 0;
h->param.analyse.i_weighted_pred = 0;
h->param.i_frame_reference = 1;
h->param.i_dpb_size = 1;
h->param.b_bluray_compat = 0;
h->param.b_vfr_input = 0;
h->param.b_aud = 1;
h->param.vui.i_chroma_loc = 0;
h->param.i_nal_hrd = X264_NAL_HRD_NONE;
h->param.b_deblocking_filter = 0;
h->param.b_stitchable = 1;
h->param.b_pic_struct = 0;
h->param.analyse.b_transform_8x8 = 1;
h->param.analyse.intra = X264_ANALYSE_I8x8;
h->param.analyse.i_chroma_qp_offset = type > 2 ? -4 : res && type ? 3 : 4;
h->param.b_cabac = !type;
h->param.rc.i_vbv_buffer_size = avcintra_lut[type][res][i].frame_size;
h->param.rc.i_vbv_max_bitrate =
h->param.rc.i_bitrate = h->param.rc.i_vbv_buffer_size * fps_num / fps_den;
h->param.rc.i_rc_method = X264_RC_ABR;
h->param.rc.f_vbv_buffer_init = 1.0;
h->param.rc.b_filler = 1;
h->param.i_cqm_preset = X264_CQM_CUSTOM;
memcpy( h->param.cqm_4iy, avcintra_lut[type][res][i].cqm_4iy, sizeof(h->param.cqm_4iy) );
memcpy( h->param.cqm_4ic, avcintra_lut[type][res][i].cqm_4ic, sizeof(h->param.cqm_4ic) );
memcpy( h->param.cqm_8iy, avcintra_lut[type][res][i].cqm_8iy, sizeof(h->param.cqm_8iy) );
/* Sony XAVC flavor much more simple */
if( h->param.i_avcintra_flavor == X264_AVCINTRA_FLAVOR_SONY )
{
h->param.i_slice_count = 8;
if( h->param.b_sliced_threads )
h->param.i_threads = h->param.i_slice_count;
/* Sony XAVC unlike AVC-Intra doesn't seem to have a QP floor */
}
else
{
/* Need exactly 10 slices of equal MB count... why? $deity knows... */
h->param.i_slice_max_mbs = ((h->param.i_width + 15) / 16) * ((h->param.i_height + 15) / 16) / 10;
h->param.i_slice_max_size = 0;
/* The slice structure only allows a maximum of 2 threads for 1080i/p
* and 1 or 5 threads for 720p */
if( h->param.b_sliced_threads )
{
if( res )
h->param.i_threads = X264_MIN( 2, h->param.i_threads );
else
{
h->param.i_threads = X264_MIN( 5, h->param.i_threads );
if( h->param.i_threads < 5 )
h->param.i_threads = 1;
}
}
/* Official encoder doesn't appear to go under 13
* and Avid cannot handle negative QPs */
h->param.rc.i_qp_min = X264_MAX( h->param.rc.i_qp_min, QP_BD_OFFSET + 1 );
}
if( type )
h->param.vui.i_sar_width = h->param.vui.i_sar_height = 1;
else
{
h->param.vui.i_sar_width = 4;
h->param.vui.i_sar_height = 3;
}
}
h->param.rc.f_rf_constant = x264_clip3f( h->param.rc.f_rf_constant, -QP_BD_OFFSET, 51 );
h->param.rc.f_rf_constant_max = x264_clip3f( h->param.rc.f_rf_constant_max, -QP_BD_OFFSET, 51 );
h->param.rc.i_qp_constant = x264_clip3( h->param.rc.i_qp_constant, -1, QP_MAX );
h->param.analyse.i_subpel_refine = x264_clip3( h->param.analyse.i_subpel_refine, 0, 11 );
h->param.rc.f_ip_factor = x264_clip3f( h->param.rc.f_ip_factor, 0.01, 10.0 );
h->param.rc.f_pb_factor = x264_clip3f( h->param.rc.f_pb_factor, 0.01, 10.0 );
if( h->param.rc.i_rc_method == X264_RC_CRF )
{
h->param.rc.i_qp_constant = h->param.rc.f_rf_constant + QP_BD_OFFSET;
h->param.rc.i_bitrate = 0;
}
if( b_open && (h->param.rc.i_rc_method == X264_RC_CQP || h->param.rc.i_rc_method == X264_RC_CRF)
&& h->param.rc.i_qp_constant == 0 )
{
h->mb.b_lossless = 1;
h->param.i_cqm_preset = X264_CQM_FLAT;
h->param.psz_cqm_file = NULL;
h->param.rc.i_rc_method = X264_RC_CQP;
h->param.rc.f_ip_factor = 1;
h->param.rc.f_pb_factor = 1;
h->param.analyse.b_psnr = 0;
h->param.analyse.b_ssim = 0;
h->param.analyse.i_chroma_qp_offset = 0;
h->param.analyse.i_trellis = 0;
h->param.analyse.b_fast_pskip = 0;
h->param.analyse.i_noise_reduction = 0;
h->param.analyse.b_psy = 0;
h->param.i_bframe = 0;
/* 8x8dct is not useful without RD in CAVLC lossless */
if( !h->param.b_cabac && h->param.analyse.i_subpel_refine < 6 )
h->param.analyse.b_transform_8x8 = 0;
}
if( h->param.rc.i_rc_method == X264_RC_CQP )
{
float qp_p = h->param.rc.i_qp_constant;
float qp_i = qp_p - 6*log2f( h->param.rc.f_ip_factor );
float qp_b = qp_p + 6*log2f( h->param.rc.f_pb_factor );
if( qp_p < 0 )
{
x264_log( h, X264_LOG_ERROR, "qp not specified\n" );
return -1;
}
h->param.rc.i_qp_min = x264_clip3( (int)(X264_MIN3( qp_p, qp_i, qp_b )), 0, QP_MAX );
h->param.rc.i_qp_max = x264_clip3( (int)(X264_MAX3( qp_p, qp_i, qp_b ) + .999), 0, QP_MAX );
h->param.rc.i_aq_mode = 0;
h->param.rc.b_mb_tree = 0;
h->param.rc.i_bitrate = 0;
}
h->param.rc.i_qp_max = x264_clip3( h->param.rc.i_qp_max, 0, QP_MAX );
h->param.rc.i_qp_min = x264_clip3( h->param.rc.i_qp_min, 0, h->param.rc.i_qp_max );
h->param.rc.i_qp_step = x264_clip3( h->param.rc.i_qp_step, 2, QP_MAX );
h->param.rc.i_bitrate = x264_clip3( h->param.rc.i_bitrate, 0, 2000000 );
if( h->param.rc.i_rc_method == X264_RC_ABR && !h->param.rc.i_bitrate )
{
x264_log( h, X264_LOG_ERROR, "bitrate not specified\n" );
return -1;
}
h->param.rc.i_vbv_buffer_size = x264_clip3( h->param.rc.i_vbv_buffer_size, 0, 2000000 );
h->param.rc.i_vbv_max_bitrate = x264_clip3( h->param.rc.i_vbv_max_bitrate, 0, 2000000 );
h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init, 0, 2000000 );
if( h->param.rc.i_vbv_buffer_size )
{
if( h->param.rc.i_rc_method == X264_RC_CQP )
{
x264_log( h, X264_LOG_WARNING, "VBV is incompatible with constant QP, ignored.\n" );
h->param.rc.i_vbv_max_bitrate = 0;
h->param.rc.i_vbv_buffer_size = 0;
}
else if( h->param.rc.i_vbv_max_bitrate == 0 )
{
if( h->param.rc.i_rc_method == X264_RC_ABR )
{
x264_log( h, X264_LOG_WARNING, "VBV maxrate unspecified, assuming CBR\n" );
h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
}
else
{
x264_log( h, X264_LOG_WARNING, "VBV bufsize set but maxrate unspecified, ignored\n" );
h->param.rc.i_vbv_buffer_size = 0;
}
}
else if( h->param.rc.i_vbv_max_bitrate < h->param.rc.i_bitrate &&
h->param.rc.i_rc_method == X264_RC_ABR )
{
x264_log( h, X264_LOG_WARNING, "max bitrate less than average bitrate, assuming CBR\n" );
h->param.rc.i_bitrate = h->param.rc.i_vbv_max_bitrate;
}
}
else if( h->param.rc.i_vbv_max_bitrate )
{
x264_log( h, X264_LOG_WARNING, "VBV maxrate specified, but no bufsize, ignored\n" );
h->param.rc.i_vbv_max_bitrate = 0;
}
h->param.i_slice_max_size = X264_MAX( h->param.i_slice_max_size, 0 );
h->param.i_slice_max_mbs = X264_MAX( h->param.i_slice_max_mbs, 0 );
h->param.i_slice_min_mbs = X264_MAX( h->param.i_slice_min_mbs, 0 );
if( h->param.i_slice_max_mbs )
h->param.i_slice_min_mbs = X264_MIN( h->param.i_slice_min_mbs, h->param.i_slice_max_mbs/2 );
else if( !h->param.i_slice_max_size )
h->param.i_slice_min_mbs = 0;
if( PARAM_INTERLACED && h->param.i_slice_min_mbs )
{
x264_log( h, X264_LOG_WARNING, "interlace + slice-min-mbs is not implemented\n" );
h->param.i_slice_min_mbs = 0;
}
int mb_width = (h->param.i_width+15)/16;
if( h->param.i_slice_min_mbs > mb_width )
{
x264_log( h, X264_LOG_WARNING, "slice-min-mbs > row mb size (%d) not implemented\n", mb_width );
h->param.i_slice_min_mbs = mb_width;
}
int max_slices = (h->param.i_height+((16<<PARAM_INTERLACED)-1))/(16<<PARAM_INTERLACED);
if( h->param.b_sliced_threads )
h->param.i_slice_count = x264_clip3( h->param.i_threads, 0, max_slices );
else
{
h->param.i_slice_count = x264_clip3( h->param.i_slice_count, 0, max_slices );
if( h->param.i_slice_max_mbs || h->param.i_slice_max_size )
h->param.i_slice_count = 0;
}
if( h->param.i_slice_count_max > 0 )
h->param.i_slice_count_max = X264_MAX( h->param.i_slice_count, h->param.i_slice_count_max );
if( h->param.b_bluray_compat )
{
h->param.i_bframe_pyramid = X264_MIN( X264_B_PYRAMID_STRICT, h->param.i_bframe_pyramid );
h->param.i_bframe = X264_MIN( h->param.i_bframe, 3 );
h->param.b_aud = 1;
h->param.i_nal_hrd = X264_MAX( h->param.i_nal_hrd, X264_NAL_HRD_VBR );
h->param.i_slice_max_size = 0;
h->param.i_slice_max_mbs = 0;
h->param.b_intra_refresh = 0;
h->param.i_frame_reference = X264_MIN( h->param.i_frame_reference, 6 );
h->param.i_dpb_size = X264_MIN( h->param.i_dpb_size, 6 );
/* Don't use I-frames, because Blu-ray treats them the same as IDR. */
h->param.i_keyint_min = 1;
/* Due to the proliferation of broken players that don't handle dupes properly. */
h->param.analyse.i_weighted_pred = X264_MIN( h->param.analyse.i_weighted_pred, X264_WEIGHTP_SIMPLE );
if( h->param.b_fake_interlaced )
h->param.b_pic_struct = 1;
}
h->param.i_frame_reference = x264_clip3( h->param.i_frame_reference, 1, X264_REF_MAX );
h->param.i_dpb_size = x264_clip3( h->param.i_dpb_size, 1, X264_REF_MAX );
if( h->param.i_scenecut_threshold < 0 )
h->param.i_scenecut_threshold = 0;
h->param.analyse.i_direct_mv_pred = x264_clip3( h->param.analyse.i_direct_mv_pred, X264_DIRECT_PRED_NONE, X264_DIRECT_PRED_AUTO );
if( !h->param.analyse.i_subpel_refine && h->param.analyse.i_direct_mv_pred > X264_DIRECT_PRED_SPATIAL )
{
x264_log( h, X264_LOG_WARNING, "subme=0 + direct=temporal is not supported\n" );
h->param.analyse.i_direct_mv_pred = X264_DIRECT_PRED_SPATIAL;
}
h->param.i_bframe = x264_clip3( h->param.i_bframe, 0, X264_MIN( X264_BFRAME_MAX, h->param.i_keyint_max-1 ) );
h->param.i_bframe_bias = x264_clip3( h->param.i_bframe_bias, -90, 100 );
if( h->param.i_bframe <= 1 )
h->param.i_bframe_pyramid = X264_B_PYRAMID_NONE;
h->param.i_bframe_pyramid = x264_clip3( h->param.i_bframe_pyramid, X264_B_PYRAMID_NONE, X264_B_PYRAMID_NORMAL );
h->param.i_bframe_adaptive = x264_clip3( h->param.i_bframe_adaptive, X264_B_ADAPT_NONE, X264_B_ADAPT_TRELLIS );
if( !h->param.i_bframe )
{
h->param.i_bframe_adaptive = X264_B_ADAPT_NONE;
h->param.analyse.i_direct_mv_pred = 0;
h->param.analyse.b_weighted_bipred = 0;
h->param.b_open_gop = 0;
}
if( h->param.b_intra_refresh && h->param.i_bframe_pyramid == X264_B_PYRAMID_NORMAL )
{
x264_log( h, X264_LOG_WARNING, "b-pyramid normal + intra-refresh is not supported\n" );
h->param.i_bframe_pyramid = X264_B_PYRAMID_STRICT;
}
if( h->param.b_intra_refresh && (h->param.i_frame_reference > 1 || h->param.i_dpb_size > 1) )
{
x264_log( h, X264_LOG_WARNING, "ref > 1 + intra-refresh is not supported\n" );
h->param.i_frame_reference = 1;
h->param.i_dpb_size = 1;
}
if( h->param.b_intra_refresh && h->param.b_open_gop )
{
x264_log( h, X264_LOG_WARNING, "intra-refresh is not compatible with open-gop\n" );
h->param.b_open_gop = 0;
}
if( !h->param.i_fps_num || !h->param.i_fps_den )
{
h->param.i_fps_num = 25;
h->param.i_fps_den = 1;
}
float fps = (float)h->param.i_fps_num / h->param.i_fps_den;
if( h->param.i_keyint_min == X264_KEYINT_MIN_AUTO )
h->param.i_keyint_min = X264_MIN( h->param.i_keyint_max / 10, (int)fps );
h->param.i_keyint_min = x264_clip3( h->param.i_keyint_min, 1, h->param.i_keyint_max/2+1 );
h->param.rc.i_lookahead = x264_clip3( h->param.rc.i_lookahead, 0, X264_LOOKAHEAD_MAX );
{
int maxrate = X264_MAX( h->param.rc.i_vbv_max_bitrate, h->param.rc.i_bitrate );
float bufsize = maxrate ? (float)h->param.rc.i_vbv_buffer_size / maxrate : 0;
h->param.rc.i_lookahead = X264_MIN( h->param.rc.i_lookahead, X264_MAX( h->param.i_keyint_max, bufsize*fps ) );
}
if( !h->param.i_timebase_num || !h->param.i_timebase_den || !(h->param.b_vfr_input || h->param.b_pulldown) )
{
h->param.i_timebase_num = h->param.i_fps_den;
h->param.i_timebase_den = h->param.i_fps_num;
}
h->param.rc.f_qcompress = x264_clip3f( h->param.rc.f_qcompress, 0.0, 1.0 );
if( h->param.i_keyint_max == 1 || h->param.rc.f_qcompress == 1 )
h->param.rc.b_mb_tree = 0;
if( (!h->param.b_intra_refresh && h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE) &&
!h->param.rc.i_lookahead && h->param.rc.b_mb_tree )
{
x264_log( h, X264_LOG_WARNING, "lookaheadless mb-tree requires intra refresh or infinite keyint\n" );
h->param.rc.b_mb_tree = 0;
}
if( b_open && h->param.rc.b_stat_read )
h->param.rc.i_lookahead = 0;
#if HAVE_THREAD
if( h->param.i_sync_lookahead < 0 )
h->param.i_sync_lookahead = h->param.i_bframe + 1;
h->param.i_sync_lookahead = X264_MIN( h->param.i_sync_lookahead, X264_LOOKAHEAD_MAX );
if( h->param.rc.b_stat_read || h->i_thread_frames == 1 )
h->param.i_sync_lookahead = 0;
#else
h->param.i_sync_lookahead = 0;
#endif
h->param.i_deblocking_filter_alphac0 = x264_clip3( h->param.i_deblocking_filter_alphac0, -6, 6 );
h->param.i_deblocking_filter_beta = x264_clip3( h->param.i_deblocking_filter_beta, -6, 6 );
h->param.analyse.i_luma_deadzone[0] = x264_clip3( h->param.analyse.i_luma_deadzone[0], 0, 32 );
h->param.analyse.i_luma_deadzone[1] = x264_clip3( h->param.analyse.i_luma_deadzone[1], 0, 32 );
h->param.i_cabac_init_idc = x264_clip3( h->param.i_cabac_init_idc, 0, 2 );
if( h->param.i_cqm_preset < X264_CQM_FLAT || h->param.i_cqm_preset > X264_CQM_CUSTOM )
h->param.i_cqm_preset = X264_CQM_FLAT;
if( h->param.analyse.i_me_method < X264_ME_DIA ||
h->param.analyse.i_me_method > X264_ME_TESA )
h->param.analyse.i_me_method = X264_ME_HEX;
h->param.analyse.i_me_range = x264_clip3( h->param.analyse.i_me_range, 4, 1024 );
if( h->param.analyse.i_me_range > 16 && h->param.analyse.i_me_method <= X264_ME_HEX )
h->param.analyse.i_me_range = 16;
if( h->param.analyse.i_me_method == X264_ME_TESA &&
(h->mb.b_lossless || h->param.analyse.i_subpel_refine <= 1) )
h->param.analyse.i_me_method = X264_ME_ESA;
h->param.analyse.b_mixed_references = h->param.analyse.b_mixed_references && h->param.i_frame_reference > 1;
h->param.analyse.inter &= X264_ANALYSE_PSUB16x16|X264_ANALYSE_PSUB8x8|X264_ANALYSE_BSUB16x16|
X264_ANALYSE_I4x4|X264_ANALYSE_I8x8;
h->param.analyse.intra &= X264_ANALYSE_I4x4|X264_ANALYSE_I8x8;
if( !(h->param.analyse.inter & X264_ANALYSE_PSUB16x16) )
h->param.analyse.inter &= ~X264_ANALYSE_PSUB8x8;
if( !h->param.analyse.b_transform_8x8 )
{
h->param.analyse.inter &= ~X264_ANALYSE_I8x8;
h->param.analyse.intra &= ~X264_ANALYSE_I8x8;
}
h->param.analyse.i_trellis = x264_clip3( h->param.analyse.i_trellis, 0, 2 );
h->param.rc.i_aq_mode = x264_clip3( h->param.rc.i_aq_mode, 0, 3 );
h->param.rc.f_aq_strength = x264_clip3f( h->param.rc.f_aq_strength, 0, 3 );
if( h->param.rc.f_aq_strength == 0 )
h->param.rc.i_aq_mode = 0;
if( h->param.i_log_level < X264_LOG_INFO )
{
h->param.analyse.b_psnr = 0;
h->param.analyse.b_ssim = 0;
}
/* Warn users trying to measure PSNR/SSIM with psy opts on. */
if( b_open && (h->param.analyse.b_psnr || h->param.analyse.b_ssim) )
{
char *s = NULL;
if( h->param.analyse.b_psy )
{
s = h->param.analyse.b_psnr ? "psnr" : "ssim";
x264_log( h, X264_LOG_WARNING, "--%s used with psy on: results will be invalid!\n", s );
}
else if( !h->param.rc.i_aq_mode && h->param.analyse.b_ssim )
{
x264_log( h, X264_LOG_WARNING, "--ssim used with AQ off: results will be invalid!\n" );
s = "ssim";
}
else if( h->param.rc.i_aq_mode && h->param.analyse.b_psnr )
{
x264_log( h, X264_LOG_WARNING, "--psnr used with AQ on: results will be invalid!\n" );
s = "psnr";
}
if( s )
x264_log( h, X264_LOG_WARNING, "--tune %s should be used if attempting to benchmark %s!\n", s, s );
}
if( !h->param.analyse.b_psy )
{
h->param.analyse.f_psy_rd = 0;
h->param.analyse.f_psy_trellis = 0;
}
h->param.analyse.f_psy_rd = x264_clip3f( h->param.analyse.f_psy_rd, 0, 10 );
h->param.analyse.f_psy_trellis = x264_clip3f( h->param.analyse.f_psy_trellis, 0, 10 );
h->mb.i_psy_rd = h->param.analyse.i_subpel_refine >= 6 ? FIX8( h->param.analyse.f_psy_rd ) : 0;
h->mb.i_psy_trellis = h->param.analyse.i_trellis ? FIX8( h->param.analyse.f_psy_trellis / 4 ) : 0;
h->param.analyse.i_chroma_qp_offset = x264_clip3(h->param.analyse.i_chroma_qp_offset, -32, 32);
/* In 4:4:4 mode, chroma gets twice as much resolution, so we can halve its quality. */
if( b_open && i_csp >= X264_CSP_I444 && i_csp < X264_CSP_BGR && h->param.analyse.b_psy )
h->param.analyse.i_chroma_qp_offset += 6;
/* Psy RDO increases overall quantizers to improve the quality of luma--this indirectly hurts chroma quality */
/* so we lower the chroma QP offset to compensate */
if( b_open && h->mb.i_psy_rd && !h->param.i_avcintra_class )
h->param.analyse.i_chroma_qp_offset -= h->param.analyse.f_psy_rd < 0.25 ? 1 : 2;
/* Psy trellis has a similar effect. */
if( b_open && h->mb.i_psy_trellis && !h->param.i_avcintra_class )
h->param.analyse.i_chroma_qp_offset -= h->param.analyse.f_psy_trellis < 0.25 ? 1 : 2;
h->param.analyse.i_chroma_qp_offset = x264_clip3(h->param.analyse.i_chroma_qp_offset, -12, 12);
/* MB-tree requires AQ to be on, even if the strength is zero. */
if( !h->param.rc.i_aq_mode && h->param.rc.b_mb_tree )
{
h->param.rc.i_aq_mode = 1;
h->param.rc.f_aq_strength = 0;
}
h->param.analyse.i_noise_reduction = x264_clip3( h->param.analyse.i_noise_reduction, 0, 1<<16 );
if( h->param.analyse.i_subpel_refine >= 10 && (h->param.analyse.i_trellis != 2 || !h->param.rc.i_aq_mode) )
h->param.analyse.i_subpel_refine = 9;
if( b_open )
{
const x264_level_t *l = x264_levels;
if( h->param.i_level_idc < 0 )
{
int maxrate_bak = h->param.rc.i_vbv_max_bitrate;
if( h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.i_vbv_buffer_size <= 0 )
h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate * 2;
x264_sps_init( h->sps, h->param.i_sps_id, &h->param );
do h->param.i_level_idc = l->level_idc;
while( l[1].level_idc && x264_validate_levels( h, 0 ) && l++ );
h->param.rc.i_vbv_max_bitrate = maxrate_bak;
}
else
{
while( l->level_idc && l->level_idc != h->param.i_level_idc )
l++;
if( l->level_idc == 0 )
{
x264_log( h, X264_LOG_ERROR, "invalid level_idc: %d\n", h->param.i_level_idc );
return -1;
}
}
if( h->param.analyse.i_mv_range <= 0 )
h->param.analyse.i_mv_range = l->mv_range >> PARAM_INTERLACED;
else
h->param.analyse.i_mv_range = x264_clip3(h->param.analyse.i_mv_range, 32, 8192 >> PARAM_INTERLACED);
}
h->param.analyse.i_weighted_pred = x264_clip3( h->param.analyse.i_weighted_pred, X264_WEIGHTP_NONE, X264_WEIGHTP_SMART );
if( h->param.i_lookahead_threads == X264_THREADS_AUTO )
{
if( h->param.b_sliced_threads )
h->param.i_lookahead_threads = h->param.i_threads;
else
{
/* If we're using much slower lookahead settings than encoding settings, it helps a lot to use
* more lookahead threads. This typically happens in the first pass of a two-pass encode, so
* try to guess at this sort of case.
*
* Tuned by a little bit of real encoding with the various presets. */
int badapt = h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS;
int subme = X264_MIN( h->param.analyse.i_subpel_refine / 3, 3 ) + (h->param.analyse.i_subpel_refine > 1);
int bframes = X264_MIN( (h->param.i_bframe - 1) / 3, 3 );
/* [b-adapt 0/1 vs 2][quantized subme][quantized bframes] */
static const uint8_t lookahead_thread_div[2][5][4] =
{{{6,6,6,6}, {3,3,3,3}, {4,4,4,4}, {6,6,6,6}, {12,12,12,12}},
{{3,2,1,1}, {2,1,1,1}, {4,3,2,1}, {6,4,3,2}, {12, 9, 6, 4}}};
h->param.i_lookahead_threads = h->param.i_threads / lookahead_thread_div[badapt][subme][bframes];
/* Since too many lookahead threads significantly degrades lookahead accuracy, limit auto
* lookahead threads to about 8 macroblock rows high each at worst. This number is chosen
* pretty much arbitrarily. */
h->param.i_lookahead_threads = X264_MIN( h->param.i_lookahead_threads, h->param.i_height / 128 );
}
}
h->param.i_lookahead_threads = x264_clip3( h->param.i_lookahead_threads, 1, X264_MIN( max_sliced_threads, X264_LOOKAHEAD_THREAD_MAX ) );
if( PARAM_INTERLACED )
{
if( h->param.analyse.i_me_method >= X264_ME_ESA )
{
x264_log( h, X264_LOG_WARNING, "interlace + me=esa is not implemented\n" );
h->param.analyse.i_me_method = X264_ME_UMH;
}
if( h->param.analyse.i_weighted_pred > 0 )
{
x264_log( h, X264_LOG_WARNING, "interlace + weightp is not implemented\n" );
h->param.analyse.i_weighted_pred = X264_WEIGHTP_NONE;
}
}
if( !h->param.analyse.i_weighted_pred && h->param.rc.b_mb_tree && h->param.analyse.b_psy )
h->param.analyse.i_weighted_pred = X264_WEIGHTP_FAKE;
if( h->i_thread_frames > 1 )
{
int r = h->param.analyse.i_mv_range_thread;
int r2;
if( r <= 0 )
{
// half of the available space is reserved and divided evenly among the threads,
// the rest is allocated to whichever thread is far enough ahead to use it.
// reserving more space increases quality for some videos, but costs more time
// in thread synchronization.
int max_range = (h->param.i_height + X264_THREAD_HEIGHT) / h->i_thread_frames - X264_THREAD_HEIGHT;
r = max_range / 2;
}
r = X264_MAX( r, h->param.analyse.i_me_range );
r = X264_MIN( r, h->param.analyse.i_mv_range );
// round up to use the whole mb row
r2 = (r & ~15) + ((-X264_THREAD_HEIGHT) & 15);
if( r2 < r )
r2 += 16;
x264_log( h, X264_LOG_DEBUG, "using mv_range_thread = %d\n", r2 );
h->param.analyse.i_mv_range_thread = r2;
}
if( h->param.rc.f_rate_tolerance < 0 )
h->param.rc.f_rate_tolerance = 0;
if( h->param.rc.f_qblur < 0 )
h->param.rc.f_qblur = 0;
if( h->param.rc.f_complexity_blur < 0 )
h->param.rc.f_complexity_blur = 0;
h->param.i_sps_id &= 31;
h->param.i_nal_hrd = x264_clip3( h->param.i_nal_hrd, X264_NAL_HRD_NONE, X264_NAL_HRD_CBR );
if( h->param.i_nal_hrd && !h->param.rc.i_vbv_buffer_size )
{
x264_log( h, X264_LOG_WARNING, "NAL HRD parameters require VBV parameters\n" );
h->param.i_nal_hrd = X264_NAL_HRD_NONE;
}
if( h->param.i_nal_hrd == X264_NAL_HRD_CBR &&
(h->param.rc.i_bitrate != h->param.rc.i_vbv_max_bitrate || !h->param.rc.i_vbv_max_bitrate) )
{
x264_log( h, X264_LOG_WARNING, "CBR HRD requires constant bitrate\n" );
h->param.i_nal_hrd = X264_NAL_HRD_VBR;
}
if( h->param.i_nal_hrd == X264_NAL_HRD_CBR )
h->param.rc.b_filler = 1;
/* ensure the booleans are 0 or 1 so they can be used in math */
#define BOOLIFY(x) h->param.x = !!h->param.x
BOOLIFY( b_cabac );
BOOLIFY( b_constrained_intra );
BOOLIFY( b_deblocking_filter );
BOOLIFY( b_deterministic );
BOOLIFY( b_sliced_threads );
BOOLIFY( b_interlaced );
BOOLIFY( b_intra_refresh );
BOOLIFY( b_aud );
BOOLIFY( b_repeat_headers );
BOOLIFY( b_annexb );
BOOLIFY( b_vfr_input );
BOOLIFY( b_pulldown );
BOOLIFY( b_tff );
BOOLIFY( b_pic_struct );
BOOLIFY( b_fake_interlaced );
BOOLIFY( b_open_gop );
BOOLIFY( b_bluray_compat );
BOOLIFY( b_stitchable );
BOOLIFY( b_full_recon );
BOOLIFY( b_opencl );
BOOLIFY( analyse.b_transform_8x8 );
BOOLIFY( analyse.b_weighted_bipred );
BOOLIFY( analyse.b_chroma_me );
BOOLIFY( analyse.b_mixed_references );
BOOLIFY( analyse.b_fast_pskip );
BOOLIFY( analyse.b_dct_decimate );
BOOLIFY( analyse.b_psy );
BOOLIFY( analyse.b_psnr );
BOOLIFY( analyse.b_ssim );
BOOLIFY( rc.b_stat_write );
BOOLIFY( rc.b_stat_read );
BOOLIFY( rc.b_mb_tree );
BOOLIFY( rc.b_filler );
#undef BOOLIFY
return 0;
}
static void mbcmp_init( x264_t *h )
{
int satd = !h->mb.b_lossless && h->param.analyse.i_subpel_refine > 1;
memcpy( h->pixf.mbcmp, satd ? h->pixf.satd : h->pixf.sad_aligned, sizeof(h->pixf.mbcmp) );
memcpy( h->pixf.mbcmp_unaligned, satd ? h->pixf.satd : h->pixf.sad, sizeof(h->pixf.mbcmp_unaligned) );
h->pixf.intra_mbcmp_x3_16x16 = satd ? h->pixf.intra_satd_x3_16x16 : h->pixf.intra_sad_x3_16x16;
h->pixf.intra_mbcmp_x3_8x16c = satd ? h->pixf.intra_satd_x3_8x16c : h->pixf.intra_sad_x3_8x16c;
h->pixf.intra_mbcmp_x3_8x8c = satd ? h->pixf.intra_satd_x3_8x8c : h->pixf.intra_sad_x3_8x8c;
h->pixf.intra_mbcmp_x3_8x8 = satd ? h->pixf.intra_sa8d_x3_8x8 : h->pixf.intra_sad_x3_8x8;
h->pixf.intra_mbcmp_x3_4x4 = satd ? h->pixf.intra_satd_x3_4x4 : h->pixf.intra_sad_x3_4x4;
h->pixf.intra_mbcmp_x9_4x4 = h->param.b_cpu_independent || h->mb.b_lossless ? NULL
: satd ? h->pixf.intra_satd_x9_4x4 : h->pixf.intra_sad_x9_4x4;
h->pixf.intra_mbcmp_x9_8x8 = h->param.b_cpu_independent || h->mb.b_lossless ? NULL
: satd ? h->pixf.intra_sa8d_x9_8x8 : h->pixf.intra_sad_x9_8x8;
satd &= h->param.analyse.i_me_method == X264_ME_TESA;
memcpy( h->pixf.fpelcmp, satd ? h->pixf.satd : h->pixf.sad, sizeof(h->pixf.fpelcmp) );
memcpy( h->pixf.fpelcmp_x3, satd ? h->pixf.satd_x3 : h->pixf.sad_x3, sizeof(h->pixf.fpelcmp_x3) );
memcpy( h->pixf.fpelcmp_x4, satd ? h->pixf.satd_x4 : h->pixf.sad_x4, sizeof(h->pixf.fpelcmp_x4) );
}
static void chroma_dsp_init( x264_t *h )
{
memcpy( h->luma2chroma_pixel, x264_luma2chroma_pixel[CHROMA_FORMAT], sizeof(h->luma2chroma_pixel) );
switch( CHROMA_FORMAT )
{
case CHROMA_400:
h->mc.prefetch_fenc = h->mc.prefetch_fenc_400;
break;
case CHROMA_420:
memcpy( h->predict_chroma, h->predict_8x8c, sizeof(h->predict_chroma) );
h->mc.prefetch_fenc = h->mc.prefetch_fenc_420;
h->loopf.deblock_chroma[0] = h->loopf.deblock_h_chroma_420;
h->loopf.deblock_chroma_intra[0] = h->loopf.deblock_h_chroma_420_intra;
h->loopf.deblock_chroma_mbaff = h->loopf.deblock_chroma_420_mbaff;
h->loopf.deblock_chroma_intra_mbaff = h->loopf.deblock_chroma_420_intra_mbaff;
h->pixf.intra_mbcmp_x3_chroma = h->pixf.intra_mbcmp_x3_8x8c;
h->quantf.coeff_last[DCT_CHROMA_DC] = h->quantf.coeff_last4;
h->quantf.coeff_level_run[DCT_CHROMA_DC] = h->quantf.coeff_level_run4;
break;
case CHROMA_422:
memcpy( h->predict_chroma, h->predict_8x16c, sizeof(h->predict_chroma) );
h->mc.prefetch_fenc = h->mc.prefetch_fenc_422;
h->loopf.deblock_chroma[0] = h->loopf.deblock_h_chroma_422;
h->loopf.deblock_chroma_intra[0] = h->loopf.deblock_h_chroma_422_intra;
h->loopf.deblock_chroma_mbaff = h->loopf.deblock_chroma_422_mbaff;
h->loopf.deblock_chroma_intra_mbaff = h->loopf.deblock_chroma_422_intra_mbaff;
h->pixf.intra_mbcmp_x3_chroma = h->pixf.intra_mbcmp_x3_8x16c;
h->quantf.coeff_last[DCT_CHROMA_DC] = h->quantf.coeff_last8;
h->quantf.coeff_level_run[DCT_CHROMA_DC] = h->quantf.coeff_level_run8;
break;
case CHROMA_444:
h->mc.prefetch_fenc = h->mc.prefetch_fenc_422; /* FIXME: doesn't cover V plane */
h->loopf.deblock_chroma_mbaff = h->loopf.deblock_luma_mbaff;
h->loopf.deblock_chroma_intra_mbaff = h->loopf.deblock_luma_intra_mbaff;
break;
}
}
static void set_aspect_ratio( x264_t *h, x264_param_t *param, int initial )
{
/* VUI */
if( param->vui.i_sar_width > 0 && param->vui.i_sar_height > 0 )
{
uint32_t i_w = param->vui.i_sar_width;
uint32_t i_h = param->vui.i_sar_height;
uint32_t old_w = h->param.vui.i_sar_width;
uint32_t old_h = h->param.vui.i_sar_height;
x264_reduce_fraction( &i_w, &i_h );
while( i_w > 65535 || i_h > 65535 )
{
i_w /= 2;
i_h /= 2;
}
x264_reduce_fraction( &i_w, &i_h );
if( i_w != old_w || i_h != old_h || initial )
{
h->param.vui.i_sar_width = 0;
h->param.vui.i_sar_height = 0;
if( i_w == 0 || i_h == 0 )
x264_log( h, X264_LOG_WARNING, "cannot create valid sample aspect ratio\n" );
else
{
x264_log( h, initial?X264_LOG_INFO:X264_LOG_DEBUG, "using SAR=%d/%d\n", i_w, i_h );
h->param.vui.i_sar_width = i_w;
h->param.vui.i_sar_height = i_h;
}
}
}
}
/****************************************************************************
* x264_encoder_open:
****************************************************************************/
x264_t *x264_encoder_open( x264_param_t *param, void *api )
{
x264_t *h;
char buf[1000], *p;
int i_slicetype_length;
CHECKED_MALLOCZERO( h, sizeof(x264_t) );
/* Create a copy of param */
memcpy( &h->param, param, sizeof(x264_param_t) );
h->param.opaque = NULL;
h->param.param_free = NULL;
if( h->param.psz_cqm_file )
CHECKED_PARAM_STRDUP( h->param.psz_cqm_file, &h->param, h->param.psz_cqm_file );
if( h->param.psz_dump_yuv )
CHECKED_PARAM_STRDUP( h->param.psz_dump_yuv, &h->param, h->param.psz_dump_yuv );
if( h->param.rc.psz_stat_out )
CHECKED_PARAM_STRDUP( h->param.rc.psz_stat_out, &h->param, h->param.rc.psz_stat_out );
if( h->param.rc.psz_stat_in )
CHECKED_PARAM_STRDUP( h->param.rc.psz_stat_in, &h->param, h->param.rc.psz_stat_in );
if( h->param.rc.psz_zones )
CHECKED_PARAM_STRDUP( h->param.rc.psz_zones, &h->param, h->param.rc.psz_zones );
if( h->param.psz_clbin_file )
CHECKED_PARAM_STRDUP( h->param.psz_clbin_file, &h->param, h->param.psz_clbin_file );
if( param->param_free )
{
x264_param_cleanup( param );
param->param_free( param );
}
/* Save pointer to bit depth independent interface */
h->api = api;
#if HAVE_INTEL_DISPATCHER
x264_intel_dispatcher_override();
#endif
if( x264_threading_init() )
{
x264_log( h, X264_LOG_ERROR, "unable to initialize threading\n" );
goto fail;
}
if( validate_parameters( h, 1 ) < 0 )
goto fail;
if( h->param.psz_cqm_file )
if( x264_cqm_parse_file( h, h->param.psz_cqm_file ) < 0 )
goto fail;
x264_reduce_fraction( &h->param.i_fps_num, &h->param.i_fps_den );
x264_reduce_fraction( &h->param.i_timebase_num, &h->param.i_timebase_den );
/* Init x264_t */
h->i_frame = -1;
h->i_frame_num = 0;
if( h->param.i_avcintra_class )
h->i_idr_pic_id = h->param.i_avcintra_class > 200 ? 4 : 5;
else
h->i_idr_pic_id = 0;
if( (uint64_t)h->param.i_timebase_den * 2 > UINT32_MAX )
{
x264_log( h, X264_LOG_ERROR, "Effective timebase denominator %u exceeds H.264 maximum\n", h->param.i_timebase_den );
goto fail;
}
set_aspect_ratio( h, &h->param, 1 );
x264_sps_init( h->sps, h->param.i_sps_id, &h->param );
x264_sps_init_scaling_list( h->sps, &h->param );
x264_pps_init( h->pps, h->param.i_sps_id, &h->param, h->sps );
x264_validate_levels( h, 1 );
h->chroma_qp_table = i_chroma_qp_table + 12 + h->pps->i_chroma_qp_index_offset;
if( x264_cqm_init( h ) < 0 )
goto fail;
h->mb.i_mb_width = h->sps->i_mb_width;
h->mb.i_mb_height = h->sps->i_mb_height;
h->mb.i_mb_count = h->mb.i_mb_width * h->mb.i_mb_height;
h->mb.chroma_h_shift = CHROMA_FORMAT == CHROMA_420 || CHROMA_FORMAT == CHROMA_422;
h->mb.chroma_v_shift = CHROMA_FORMAT == CHROMA_420;
/* Adaptive MBAFF and subme 0 are not supported as we require halving motion
* vectors during prediction, resulting in hpel mvs.
* The chosen solution is to make MBAFF non-adaptive in this case. */
h->mb.b_adaptive_mbaff = PARAM_INTERLACED && h->param.analyse.i_subpel_refine;
/* Init frames. */
if( h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS && !h->param.rc.b_stat_read )
h->frames.i_delay = X264_MAX(h->param.i_bframe,3)*4;
else
h->frames.i_delay = h->param.i_bframe;
if( h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size )
h->frames.i_delay = X264_MAX( h->frames.i_delay, h->param.rc.i_lookahead );
i_slicetype_length = h->frames.i_delay;
h->frames.i_delay += h->i_thread_frames - 1;
h->frames.i_delay += h->param.i_sync_lookahead;
h->frames.i_delay += h->param.b_vfr_input;
h->frames.i_bframe_delay = h->param.i_bframe ? (h->param.i_bframe_pyramid ? 2 : 1) : 0;
h->frames.i_max_ref0 = h->param.i_frame_reference;
h->frames.i_max_ref1 = X264_MIN( h->sps->vui.i_num_reorder_frames, h->param.i_frame_reference );
h->frames.i_max_dpb = h->sps->vui.i_max_dec_frame_buffering;
h->frames.b_have_lowres = !h->param.rc.b_stat_read
&& ( h->param.rc.i_rc_method == X264_RC_ABR
|| h->param.rc.i_rc_method == X264_RC_CRF
|| h->param.i_bframe_adaptive
|| h->param.i_scenecut_threshold
|| h->param.rc.b_mb_tree
|| h->param.analyse.i_weighted_pred );
h->frames.b_have_lowres |= h->param.rc.b_stat_read && h->param.rc.i_vbv_buffer_size > 0;
h->frames.b_have_sub8x8_esa = !!(h->param.analyse.inter & X264_ANALYSE_PSUB8x8);
h->frames.i_last_idr =
h->frames.i_last_keyframe = - h->param.i_keyint_max;
h->frames.i_input = 0;
h->frames.i_largest_pts = h->frames.i_second_largest_pts = -1;
h->frames.i_poc_last_open_gop = -1;
CHECKED_MALLOCZERO( h->cost_table, sizeof(*h->cost_table) );
CHECKED_MALLOCZERO( h->frames.unused[0], (h->frames.i_delay + 3) * sizeof(x264_frame_t *) );
/* Allocate room for max refs plus a few extra just in case. */
CHECKED_MALLOCZERO( h->frames.unused[1], (h->i_thread_frames + X264_REF_MAX + 4) * sizeof(x264_frame_t *) );
CHECKED_MALLOCZERO( h->frames.current, (h->param.i_sync_lookahead + h->param.i_bframe
+ h->i_thread_frames + 3) * sizeof(x264_frame_t *) );
if( h->param.analyse.i_weighted_pred > 0 )
CHECKED_MALLOCZERO( h->frames.blank_unused, h->i_thread_frames * 4 * sizeof(x264_frame_t *) );
h->i_ref[0] = h->i_ref[1] = 0;
h->i_cpb_delay = h->i_coded_fields = h->i_disp_fields = 0;
h->i_prev_duration = ((uint64_t)h->param.i_fps_den * h->sps->vui.i_time_scale) / ((uint64_t)h->param.i_fps_num * h->sps->vui.i_num_units_in_tick);
h->i_disp_fields_last_frame = -1;
x264_rdo_init();
/* init CPU functions */
#if (ARCH_X86 || ARCH_X86_64) && HIGH_BIT_DEPTH
/* FIXME: Only 8-bit has been optimized for AVX-512 so far. The few AVX-512 functions
* enabled in high bit-depth are insignificant and just causes potential issues with
* unnecessary thermal throttling and whatnot, so keep it disabled for now. */
h->param.cpu &= ~X264_CPU_AVX512;
#endif
x264_predict_16x16_init( h->param.cpu, h->predict_16x16 );
x264_predict_8x8c_init( h->param.cpu, h->predict_8x8c );
x264_predict_8x16c_init( h->param.cpu, h->predict_8x16c );
x264_predict_8x8_init( h->param.cpu, h->predict_8x8, &h->predict_8x8_filter );
x264_predict_4x4_init( h->param.cpu, h->predict_4x4 );
x264_pixel_init( h->param.cpu, &h->pixf );
x264_dct_init( h->param.cpu, &h->dctf );
x264_zigzag_init( h->param.cpu, &h->zigzagf_progressive, &h->zigzagf_interlaced );
memcpy( &h->zigzagf, PARAM_INTERLACED ? &h->zigzagf_interlaced : &h->zigzagf_progressive, sizeof(h->zigzagf) );
x264_mc_init( h->param.cpu, &h->mc, h->param.b_cpu_independent );
x264_quant_init( h, h->param.cpu, &h->quantf );
x264_deblock_init( h->param.cpu, &h->loopf, PARAM_INTERLACED );
x264_bitstream_init( h->param.cpu, &h->bsf );
if( h->param.b_cabac )
x264_cabac_init( h );
else
x264_cavlc_init( h );
mbcmp_init( h );
chroma_dsp_init( h );
p = buf + sprintf( buf, "using cpu capabilities:" );
for( int i = 0; x264_cpu_names[i].flags; i++ )
{
if( !strcmp(x264_cpu_names[i].name, "SSE")
&& h->param.cpu & (X264_CPU_SSE2) )
continue;
if( !strcmp(x264_cpu_names[i].name, "SSE2")
&& h->param.cpu & (X264_CPU_SSE2_IS_FAST|X264_CPU_SSE2_IS_SLOW) )
continue;
if( !strcmp(x264_cpu_names[i].name, "SSE3")
&& (h->param.cpu & X264_CPU_SSSE3 || !(h->param.cpu & X264_CPU_CACHELINE_64)) )
continue;
if( !strcmp(x264_cpu_names[i].name, "SSE4.1")
&& (h->param.cpu & X264_CPU_SSE42) )
continue;
if( !strcmp(x264_cpu_names[i].name, "LZCNT")
&& (h->param.cpu & X264_CPU_BMI1) )
continue;
if( !strcmp(x264_cpu_names[i].name, "BMI1")
&& (h->param.cpu & X264_CPU_BMI2) )
continue;
if( !strcmp(x264_cpu_names[i].name, "FMA4")
&& (h->param.cpu & X264_CPU_FMA3) )
continue;
if( (h->param.cpu & x264_cpu_names[i].flags) == x264_cpu_names[i].flags
&& (!i || x264_cpu_names[i].flags != x264_cpu_names[i-1].flags) )
p += sprintf( p, " %s", x264_cpu_names[i].name );
}
if( !h->param.cpu )
p += sprintf( p, " none!" );
x264_log( h, X264_LOG_INFO, "%s\n", buf );
if( x264_analyse_init_costs( h ) )
goto fail;
/* Must be volatile or else GCC will optimize it out. */
volatile int temp = 392;
if( x264_clz( temp ) != 23 )
{
x264_log( h, X264_LOG_ERROR, "CLZ test failed: x264 has been miscompiled!\n" );
#if ARCH_X86 || ARCH_X86_64
x264_log( h, X264_LOG_ERROR, "Are you attempting to run an SSE4a/LZCNT-targeted build on a CPU that\n" );
x264_log( h, X264_LOG_ERROR, "doesn't support it?\n" );
#endif
goto fail;
}
h->out.i_nal = 0;
h->out.i_bitstream = x264_clip3f(
h->param.i_width * h->param.i_height * 4
* ( h->param.rc.i_rc_method == X264_RC_ABR
? pow( 0.95, h->param.rc.i_qp_min )
: pow( 0.95, h->param.rc.i_qp_constant ) * X264_MAX( 1, h->param.rc.f_ip_factor ) ),
1000000, INT_MAX/3
);
h->nal_buffer_size = h->out.i_bitstream * 3/2 + 4 + 64; /* +4 for startcode, +64 for nal_escape assembly padding */
CHECKED_MALLOC( h->nal_buffer, h->nal_buffer_size );
CHECKED_MALLOC( h->reconfig_h, sizeof(x264_t) );
if( h->param.i_threads > 1 &&
x264_threadpool_init( &h->threadpool, h->param.i_threads ) )
goto fail;
if( h->param.i_lookahead_threads > 1 &&
x264_threadpool_init( &h->lookaheadpool, h->param.i_lookahead_threads ) )
goto fail;
#if HAVE_OPENCL
if( h->param.b_opencl )
{
h->opencl.ocl = x264_opencl_load_library();
if( !h->opencl.ocl )
{
x264_log( h, X264_LOG_WARNING, "failed to load OpenCL\n" );
h->param.b_opencl = 0;
}
}
#endif
h->thread[0] = h;
for( int i = 1; i < h->param.i_threads + !!h->param.i_sync_lookahead; i++ )
CHECKED_MALLOC( h->thread[i], sizeof(x264_t) );
if( h->param.i_lookahead_threads > 1 )
for( int i = 0; i < h->param.i_lookahead_threads; i++ )
{
CHECKED_MALLOC( h->lookahead_thread[i], sizeof(x264_t) );
*h->lookahead_thread[i] = *h;
}
*h->reconfig_h = *h;
for( int i = 0; i < h->param.i_threads; i++ )
{
int init_nal_count = h->param.i_slice_count + 3;
int allocate_threadlocal_data = !h->param.b_sliced_threads || !i;
if( i > 0 )
*h->thread[i] = *h;
if( x264_pthread_mutex_init( &h->thread[i]->mutex, NULL ) )
goto fail;
if( x264_pthread_cond_init( &h->thread[i]->cv, NULL ) )
goto fail;
if( allocate_threadlocal_data )
{
h->thread[i]->fdec = x264_frame_pop_unused( h, 1 );
if( !h->thread[i]->fdec )
goto fail;
}
else
h->thread[i]->fdec = h->thread[0]->fdec;
CHECKED_MALLOC( h->thread[i]->out.p_bitstream, h->out.i_bitstream );
/* Start each thread with room for init_nal_count NAL units; it'll realloc later if needed. */
CHECKED_MALLOC( h->thread[i]->out.nal, init_nal_count*sizeof(x264_nal_t) );
h->thread[i]->out.i_nals_allocated = init_nal_count;
if( allocate_threadlocal_data && x264_macroblock_cache_allocate( h->thread[i] ) < 0 )
goto fail;
}
#if HAVE_OPENCL
if( h->param.b_opencl && x264_opencl_lookahead_init( h ) < 0 )
h->param.b_opencl = 0;
#endif
if( x264_lookahead_init( h, i_slicetype_length ) )
goto fail;
for( int i = 0; i < h->param.i_threads; i++ )
if( x264_macroblock_thread_allocate( h->thread[i], 0 ) < 0 )
goto fail;
if( x264_ratecontrol_new( h ) < 0 )
goto fail;
if( h->param.i_nal_hrd )
{
x264_log( h, X264_LOG_DEBUG, "HRD bitrate: %i bits/sec\n", h->sps->vui.hrd.i_bit_rate_unscaled );
x264_log( h, X264_LOG_DEBUG, "CPB size: %i bits\n", h->sps->vui.hrd.i_cpb_size_unscaled );
}
if( h->param.psz_dump_yuv )
{
/* create or truncate the reconstructed video file */
FILE *f = x264_fopen( h->param.psz_dump_yuv, "w" );
if( !f )
{
x264_log( h, X264_LOG_ERROR, "dump_yuv: can't write to %s\n", h->param.psz_dump_yuv );
goto fail;
}
else if( !x264_is_regular_file( f ) )
{
x264_log( h, X264_LOG_ERROR, "dump_yuv: incompatible with non-regular file %s\n", h->param.psz_dump_yuv );
fclose( f );
goto fail;
}
fclose( f );
}
const char *profile = h->sps->i_profile_idc == PROFILE_BASELINE ? "Constrained Baseline" :
h->sps->i_profile_idc == PROFILE_MAIN ? "Main" :
h->sps->i_profile_idc == PROFILE_HIGH ? "High" :
h->sps->i_profile_idc == PROFILE_HIGH10 ?
(h->sps->b_constraint_set3 ? "High 10 Intra" : "High 10") :
h->sps->i_profile_idc == PROFILE_HIGH422 ?
(h->sps->b_constraint_set3 ? "High 4:2:2 Intra" : "High 4:2:2") :
h->sps->b_constraint_set3 ? "High 4:4:4 Intra" : "High 4:4:4 Predictive";
char level[16];
if( h->sps->i_level_idc == 9 || ( h->sps->i_level_idc == 11 && h->sps->b_constraint_set3 &&
(h->sps->i_profile_idc == PROFILE_BASELINE || h->sps->i_profile_idc == PROFILE_MAIN) ) )
strcpy( level, "1b" );
else
snprintf( level, sizeof(level), "%d.%d", h->sps->i_level_idc / 10, h->sps->i_level_idc % 10 );
static const char * const subsampling[4] = { "4:0:0", "4:2:0", "4:2:2", "4:4:4" };
x264_log( h, X264_LOG_INFO, "profile %s, level %s, %s, %d-bit\n",
profile, level, subsampling[CHROMA_FORMAT], BIT_DEPTH );
return h;
fail:
x264_free( h );
return NULL;
}
/****************************************************************************/
static int encoder_try_reconfig( x264_t *h, x264_param_t *param, int *rc_reconfig )
{
*rc_reconfig = 0;
set_aspect_ratio( h, param, 0 );
#define COPY(var) h->param.var = param->var
COPY( i_frame_reference ); // but never uses more refs than initially specified
COPY( i_bframe_bias );
if( h->param.i_scenecut_threshold )
COPY( i_scenecut_threshold ); // can't turn it on or off, only vary the threshold
COPY( b_deblocking_filter );
COPY( i_deblocking_filter_alphac0 );
COPY( i_deblocking_filter_beta );
COPY( i_frame_packing );
COPY( mastering_display );
COPY( content_light_level );
COPY( i_alternative_transfer );
COPY( analyse.inter );
COPY( analyse.intra );
COPY( analyse.i_direct_mv_pred );
/* Scratch buffer prevents me_range from being increased for esa/tesa */
if( h->param.analyse.i_me_method < X264_ME_ESA || param->analyse.i_me_range < h->param.analyse.i_me_range )
COPY( analyse.i_me_range );
COPY( analyse.i_noise_reduction );
/* We can't switch out of subme=0 during encoding. */
if( h->param.analyse.i_subpel_refine )
COPY( analyse.i_subpel_refine );
COPY( analyse.i_trellis );
COPY( analyse.b_chroma_me );
COPY( analyse.b_dct_decimate );
COPY( analyse.b_fast_pskip );
COPY( analyse.b_mixed_references );
COPY( analyse.f_psy_rd );
COPY( analyse.f_psy_trellis );
COPY( crop_rect );
// can only twiddle these if they were enabled to begin with:
if( h->param.analyse.i_me_method >= X264_ME_ESA || param->analyse.i_me_method < X264_ME_ESA )
COPY( analyse.i_me_method );
if( h->param.analyse.i_me_method >= X264_ME_ESA && !h->frames.b_have_sub8x8_esa )
h->param.analyse.inter &= ~X264_ANALYSE_PSUB8x8;
if( h->pps->b_transform_8x8_mode )
COPY( analyse.b_transform_8x8 );
if( h->frames.i_max_ref1 > 1 )
COPY( i_bframe_pyramid );
COPY( i_slice_max_size );
COPY( i_slice_max_mbs );
COPY( i_slice_min_mbs );
COPY( i_slice_count );
COPY( i_slice_count_max );
COPY( b_tff );
/* VBV can't be turned on if it wasn't on to begin with */
if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 &&
param->rc.i_vbv_max_bitrate > 0 && param->rc.i_vbv_buffer_size > 0 )
{
*rc_reconfig |= h->param.rc.i_vbv_max_bitrate != param->rc.i_vbv_max_bitrate;
*rc_reconfig |= h->param.rc.i_vbv_buffer_size != param->rc.i_vbv_buffer_size;
*rc_reconfig |= h->param.rc.i_bitrate != param->rc.i_bitrate;
COPY( rc.i_vbv_max_bitrate );
COPY( rc.i_vbv_buffer_size );
COPY( rc.i_bitrate );
}
*rc_reconfig |= h->param.rc.f_rf_constant != param->rc.f_rf_constant;
*rc_reconfig |= h->param.rc.f_rf_constant_max != param->rc.f_rf_constant_max;
COPY( rc.f_rf_constant );
COPY( rc.f_rf_constant_max );
#undef COPY
return validate_parameters( h, 0 );
}
int x264_encoder_reconfig_apply( x264_t *h, x264_param_t *param )
{
int rc_reconfig;
int ret = encoder_try_reconfig( h, param, &rc_reconfig );
mbcmp_init( h );
if( !ret )
x264_sps_init_reconfigurable( h->sps, &h->param );
/* Supported reconfiguration options (1-pass only):
* vbv-maxrate
* vbv-bufsize
* crf
* bitrate (CBR only) */
if( !ret && rc_reconfig )
x264_ratecontrol_init_reconfigurable( h, 0 );
return ret;
}
/****************************************************************************
* x264_encoder_reconfig:
****************************************************************************/
int x264_encoder_reconfig( x264_t *h, x264_param_t *param )
{
h = h->thread[h->thread[0]->i_thread_phase];
x264_param_t param_save = h->reconfig_h->param;
h->reconfig_h->param = h->param;
int rc_reconfig;
int ret = encoder_try_reconfig( h->reconfig_h, param, &rc_reconfig );
if( !ret )
h->reconfig = 1;
else
h->reconfig_h->param = param_save;
return ret;
}
/****************************************************************************
* x264_encoder_parameters:
****************************************************************************/
void x264_encoder_parameters( x264_t *h, x264_param_t *param )
{
memcpy( param, &h->thread[h->i_thread_phase]->param, sizeof(x264_param_t) );
param->opaque = NULL;
}
/* internal usage */
static void nal_start( x264_t *h, int i_type, int i_ref_idc )
{
x264_nal_t *nal = &h->out.nal[h->out.i_nal];
nal->i_ref_idc = i_ref_idc;
nal->i_type = i_type;
nal->b_long_startcode = 1;
nal->i_payload= 0;
nal->p_payload= &h->out.p_bitstream[bs_pos( &h->out.bs ) / 8];
nal->i_padding= 0;
}
/* if number of allocated nals is not enough, re-allocate a larger one. */
static int nal_check_buffer( x264_t *h )
{
if( h->out.i_nal >= h->out.i_nals_allocated )
{
x264_nal_t *new_out = x264_malloc( sizeof(x264_nal_t) * (h->out.i_nals_allocated*2) );
if( !new_out )
return -1;
memcpy( new_out, h->out.nal, sizeof(x264_nal_t) * (h->out.i_nals_allocated) );
x264_free( h->out.nal );
h->out.nal = new_out;
h->out.i_nals_allocated *= 2;
}
return 0;
}
static int nal_end( x264_t *h )
{
x264_nal_t *nal = &h->out.nal[h->out.i_nal];
uint8_t *end = &h->out.p_bitstream[bs_pos( &h->out.bs ) / 8];
nal->i_payload = end - nal->p_payload;
/* Assembly implementation of nal_escape reads past the end of the input.
* While undefined padding wouldn't actually affect the output, it makes valgrind unhappy. */
memset( end, 0xff, 64 );
if( h->param.nalu_process )
h->param.nalu_process( (x264_t *)h->api, nal, h->fenc->opaque );
h->out.i_nal++;
return nal_check_buffer( h );
}
static int check_encapsulated_buffer( x264_t *h, x264_t *h0, int start,
int64_t previous_nal_size, int64_t necessary_size )
{
if( h0->nal_buffer_size < necessary_size )
{
necessary_size *= 2;
if( necessary_size > INT_MAX )
return -1;
uint8_t *buf = x264_malloc( necessary_size );
if( !buf )
return -1;
if( previous_nal_size )
memcpy( buf, h0->nal_buffer, previous_nal_size );
intptr_t delta = buf - h0->nal_buffer;
for( int i = 0; i < start; i++ )
h->out.nal[i].p_payload += delta;
x264_free( h0->nal_buffer );
h0->nal_buffer = buf;
h0->nal_buffer_size = necessary_size;
}
return 0;
}
static int encoder_encapsulate_nals( x264_t *h, int start )
{
x264_t *h0 = h->thread[0];
int64_t nal_size = 0, previous_nal_size = 0;
if( h->param.nalu_process )
{
for( int i = start; i < h->out.i_nal; i++ )
nal_size += h->out.nal[i].i_payload;
if( nal_size > INT_MAX )
return -1;
return nal_size;
}
for( int i = 0; i < start; i++ )
previous_nal_size += h->out.nal[i].i_payload;
for( int i = start; i < h->out.i_nal; i++ )
nal_size += h->out.nal[i].i_payload;
/* Worst-case NAL unit escaping: reallocate the buffer if it's too small. */
int64_t necessary_size = previous_nal_size + nal_size * 3/2 + h->out.i_nal * 4 + 4 + 64;
for( int i = start; i < h->out.i_nal; i++ )
necessary_size += h->out.nal[i].i_padding;
if( check_encapsulated_buffer( h, h0, start, previous_nal_size, necessary_size ) )
return -1;
uint8_t *nal_buffer = h0->nal_buffer + previous_nal_size;
for( int i = start; i < h->out.i_nal; i++ )
{
h->out.nal[i].b_long_startcode = !i || h->out.nal[i].i_type == NAL_SPS || h->out.nal[i].i_type == NAL_PPS ||
h->param.i_avcintra_class;
x264_nal_encode( h, nal_buffer, &h->out.nal[i] );
nal_buffer += h->out.nal[i].i_payload;
}
x264_emms();
return nal_buffer - (h0->nal_buffer + previous_nal_size);
}
/****************************************************************************
* x264_encoder_headers:
****************************************************************************/
int x264_encoder_headers( x264_t *h, x264_nal_t **pp_nal, int *pi_nal )
{
int frame_size = 0;
/* init bitstream context */
h->out.i_nal = 0;
bs_init( &h->out.bs, h->out.p_bitstream, h->out.i_bitstream );
/* Write SEI, SPS and PPS. */
/* generate sequence parameters */
nal_start( h, NAL_SPS, NAL_PRIORITY_HIGHEST );
x264_sps_write( &h->out.bs, h->sps );
if( nal_end( h ) )
return -1;
/* generate picture parameters */
nal_start( h, NAL_PPS, NAL_PRIORITY_HIGHEST );
x264_pps_write( &h->out.bs, h->sps, h->pps );
if( nal_end( h ) )
return -1;
/* identify ourselves */
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
if( x264_sei_version_write( h, &h->out.bs ) )
return -1;
if( nal_end( h ) )
return -1;
frame_size = encoder_encapsulate_nals( h, 0 );
if( frame_size < 0 )
return -1;
/* now set output*/
*pi_nal = h->out.i_nal;
*pp_nal = &h->out.nal[0];
h->out.i_nal = 0;
return frame_size;
}
/* Check to see whether we have chosen a reference list ordering different
* from the standard's default. */
static inline void reference_check_reorder( x264_t *h )
{
/* The reorder check doesn't check for missing frames, so just
* force a reorder if one of the reference list is corrupt. */
for( int i = 0; h->frames.reference[i]; i++ )
if( h->frames.reference[i]->b_corrupt )
{
h->b_ref_reorder[0] = 1;
return;
}
for( int list = 0; list <= (h->sh.i_type == SLICE_TYPE_B); list++ )
for( int i = 0; i < h->i_ref[list] - 1; i++ )
{
int framenum_diff = h->fref[list][i+1]->i_frame_num - h->fref[list][i]->i_frame_num;
int poc_diff = h->fref[list][i+1]->i_poc - h->fref[list][i]->i_poc;
/* P and B-frames use different default orders. */
if( h->sh.i_type == SLICE_TYPE_P ? framenum_diff > 0 : list == 1 ? poc_diff < 0 : poc_diff > 0 )
{
h->b_ref_reorder[list] = 1;
return;
}
}
}
/* return -1 on failure, else return the index of the new reference frame */
static int weighted_reference_duplicate( x264_t *h, int i_ref, const x264_weight_t *w )
{
int i = h->i_ref[0];
int j = 1;
x264_frame_t *newframe;
if( i <= 1 ) /* empty list, definitely can't duplicate frame */
return -1;
//Duplication is only used in X264_WEIGHTP_SMART
if( h->param.analyse.i_weighted_pred != X264_WEIGHTP_SMART )
return -1;
/* Duplication is a hack to compensate for crappy rounding in motion compensation.
* With high bit depth, it's not worth doing, so turn it off except in the case of
* unweighted dupes. */
if( BIT_DEPTH > 8 && w != x264_weight_none )
return -1;
newframe = x264_frame_pop_blank_unused( h );
if( !newframe )
return -1;
//FIXME: probably don't need to copy everything
*newframe = *h->fref[0][i_ref];
newframe->i_reference_count = 1;
newframe->orig = h->fref[0][i_ref];
newframe->b_duplicate = 1;
memcpy( h->fenc->weight[j], w, sizeof(h->fenc->weight[i]) );
/* shift the frames to make space for the dupe. */
h->b_ref_reorder[0] = 1;
if( h->i_ref[0] < X264_REF_MAX )
++h->i_ref[0];
h->fref[0][X264_REF_MAX-1] = NULL;
x264_frame_unshift( &h->fref[0][j], newframe );
return j;
}
static void weighted_pred_init( x264_t *h )
{
/* for now no analysis and set all weights to nothing */
for( int i_ref = 0; i_ref < h->i_ref[0]; i_ref++ )
h->fenc->weighted[i_ref] = h->fref[0][i_ref]->filtered[0][0];
// FIXME: This only supports weighting of one reference frame
// and duplicates of that frame.
h->fenc->i_lines_weighted = 0;
for( int i_ref = 0; i_ref < (h->i_ref[0] << SLICE_MBAFF); i_ref++ )
for( int i = 0; i < 3; i++ )
h->sh.weight[i_ref][i].weightfn = NULL;
if( h->sh.i_type != SLICE_TYPE_P || h->param.analyse.i_weighted_pred <= 0 )
return;
int i_padv = PADV << PARAM_INTERLACED;
int denom = -1;
int weightplane[2] = { 0, 0 };
int buffer_next = 0;
for( int i = 0; i < 3; i++ )
{
for( int j = 0; j < h->i_ref[0]; j++ )
{
if( h->fenc->weight[j][i].weightfn )
{
h->sh.weight[j][i] = h->fenc->weight[j][i];
// if weight is useless, don't write it to stream
if( h->sh.weight[j][i].i_scale == 1<<h->sh.weight[j][i].i_denom && h->sh.weight[j][i].i_offset == 0 )
h->sh.weight[j][i].weightfn = NULL;
else
{
if( !weightplane[!!i] )
{
weightplane[!!i] = 1;
h->sh.weight[0][!!i].i_denom = denom = h->sh.weight[j][i].i_denom;
assert( x264_clip3( denom, 0, 7 ) == denom );
}
assert( h->sh.weight[j][i].i_denom == denom );
if( !i )
{
h->fenc->weighted[j] = h->mb.p_weight_buf[buffer_next++] + h->fenc->i_stride[0] * i_padv + PADH_ALIGN;
//scale full resolution frame
if( h->param.i_threads == 1 )
{
pixel *src = h->fref[0][j]->filtered[0][0] - h->fref[0][j]->i_stride[0]*i_padv - PADH_ALIGN;
pixel *dst = h->fenc->weighted[j] - h->fenc->i_stride[0]*i_padv - PADH_ALIGN;
int stride = h->fenc->i_stride[0];
int width = h->fenc->i_width[0] + PADH2;
int height = h->fenc->i_lines[0] + i_padv*2;
x264_weight_scale_plane( h, dst, stride, src, stride, width, height, &h->sh.weight[j][0] );
h->fenc->i_lines_weighted = height;
}
}
}
}
}
}
if( weightplane[1] )
for( int i = 0; i < h->i_ref[0]; i++ )
{
if( h->sh.weight[i][1].weightfn && !h->sh.weight[i][2].weightfn )
{
h->sh.weight[i][2].i_scale = 1 << h->sh.weight[0][1].i_denom;
h->sh.weight[i][2].i_offset = 0;
}
else if( h->sh.weight[i][2].weightfn && !h->sh.weight[i][1].weightfn )
{
h->sh.weight[i][1].i_scale = 1 << h->sh.weight[0][1].i_denom;
h->sh.weight[i][1].i_offset = 0;
}
}
if( !weightplane[0] )
h->sh.weight[0][0].i_denom = 0;
if( !weightplane[1] )
h->sh.weight[0][1].i_denom = 0;
h->sh.weight[0][2].i_denom = h->sh.weight[0][1].i_denom;
}
static inline int reference_distance( x264_t *h, x264_frame_t *frame )
{
if( h->param.i_frame_packing == 5 )
return abs((h->fenc->i_frame&~1) - (frame->i_frame&~1)) +
((h->fenc->i_frame&1) != (frame->i_frame&1));
else
return abs(h->fenc->i_frame - frame->i_frame);
}
static inline void reference_build_list( x264_t *h, int i_poc )
{
int b_ok;
/* build ref list 0/1 */
h->mb.pic.i_fref[0] = h->i_ref[0] = 0;
h->mb.pic.i_fref[1] = h->i_ref[1] = 0;
if( h->sh.i_type == SLICE_TYPE_I )
return;
for( int i = 0; h->frames.reference[i]; i++ )
{
if( h->frames.reference[i]->b_corrupt )
continue;
if( h->frames.reference[i]->i_poc < i_poc )
h->fref[0][h->i_ref[0]++] = h->frames.reference[i];
else if( h->frames.reference[i]->i_poc > i_poc )
h->fref[1][h->i_ref[1]++] = h->frames.reference[i];
}
if( h->sh.i_mmco_remove_from_end )
{
/* Order ref0 for MMCO remove */
do
{
b_ok = 1;
for( int i = 0; i < h->i_ref[0] - 1; i++ )
{
if( h->fref[0][i]->i_frame < h->fref[0][i+1]->i_frame )
{
XCHG( x264_frame_t*, h->fref[0][i], h->fref[0][i+1] );
b_ok = 0;
break;
}
}
} while( !b_ok );
for( int i = h->i_ref[0]-1; i >= h->i_ref[0] - h->sh.i_mmco_remove_from_end; i-- )
{
int diff = h->i_frame_num - h->fref[0][i]->i_frame_num;
h->sh.mmco[h->sh.i_mmco_command_count].i_poc = h->fref[0][i]->i_poc;
h->sh.mmco[h->sh.i_mmco_command_count++].i_difference_of_pic_nums = diff;
}
}
/* Order reference lists by distance from the current frame. */
for( int list = 0; list < 2; list++ )
{
h->fref_nearest[list] = h->fref[list][0];
do
{
b_ok = 1;
for( int i = 0; i < h->i_ref[list] - 1; i++ )
{
if( list ? h->fref[list][i+1]->i_poc < h->fref_nearest[list]->i_poc
: h->fref[list][i+1]->i_poc > h->fref_nearest[list]->i_poc )
h->fref_nearest[list] = h->fref[list][i+1];
if( reference_distance( h, h->fref[list][i] ) > reference_distance( h, h->fref[list][i+1] ) )
{
XCHG( x264_frame_t*, h->fref[list][i], h->fref[list][i+1] );
b_ok = 0;
break;
}
}
} while( !b_ok );
}
reference_check_reorder( h );
h->i_ref[1] = X264_MIN( h->i_ref[1], h->frames.i_max_ref1 );
h->i_ref[0] = X264_MIN( h->i_ref[0], h->frames.i_max_ref0 );
h->i_ref[0] = X264_MIN( h->i_ref[0], h->param.i_frame_reference ); // if reconfig() has lowered the limit
/* For Blu-ray compliance, don't reference frames outside of the minigop. */
if( IS_X264_TYPE_B( h->fenc->i_type ) && h->param.b_bluray_compat )
h->i_ref[0] = X264_MIN( h->i_ref[0], IS_X264_TYPE_B( h->fref[0][0]->i_type ) + 1 );
/* add duplicates */
if( h->fenc->i_type == X264_TYPE_P )
{
int idx = -1;
if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE )
{
x264_weight_t w[3];
w[1].weightfn = w[2].weightfn = NULL;
if( h->param.rc.b_stat_read )
x264_ratecontrol_set_weights( h, h->fenc );
if( !h->fenc->weight[0][0].weightfn )
{
h->fenc->weight[0][0].i_denom = 0;
SET_WEIGHT( w[0], 1, 1, 0, -1 );
idx = weighted_reference_duplicate( h, 0, w );
}
else
{
if( h->fenc->weight[0][0].i_scale == 1<<h->fenc->weight[0][0].i_denom )
{
SET_WEIGHT( h->fenc->weight[0][0], 1, 1, 0, h->fenc->weight[0][0].i_offset );
}
weighted_reference_duplicate( h, 0, x264_weight_none );
if( h->fenc->weight[0][0].i_offset > -128 )
{
w[0] = h->fenc->weight[0][0];
w[0].i_offset--;
h->mc.weight_cache( h, &w[0] );
idx = weighted_reference_duplicate( h, 0, w );
}
}
}
h->mb.ref_blind_dupe = idx;
}
assert( h->i_ref[0] + h->i_ref[1] <= X264_REF_MAX );
h->mb.pic.i_fref[0] = h->i_ref[0];
h->mb.pic.i_fref[1] = h->i_ref[1];
}
static void fdec_filter_row( x264_t *h, int mb_y, int pass )
{
/* mb_y is the mb to be encoded next, not the mb to be filtered here */
int b_hpel = h->fdec->b_kept_as_ref;
int b_deblock = h->sh.i_disable_deblocking_filter_idc != 1;
int b_end = mb_y == h->i_threadslice_end;
int b_measure_quality = 1;
int min_y = mb_y - (1 << SLICE_MBAFF);
int b_start = min_y == h->i_threadslice_start;
/* Even in interlaced mode, deblocking never modifies more than 4 pixels
* above each MB, as bS=4 doesn't happen for the top of interlaced mbpairs. */
int minpix_y = min_y*16 - 4 * !b_start;
int maxpix_y = mb_y*16 - 4 * !b_end;
b_deblock &= b_hpel || h->param.b_full_recon || h->param.psz_dump_yuv;
if( h->param.b_sliced_threads )
{
switch( pass )
{
/* During encode: only do deblock if asked for */
default:
case 0:
b_deblock &= h->param.b_full_recon;
b_hpel = 0;
break;
/* During post-encode pass: do deblock if not done yet, do hpel for all
* rows except those between slices. */
case 1:
b_deblock &= !h->param.b_full_recon;
b_hpel &= !(b_start && min_y > 0);
b_measure_quality = 0;
break;
/* Final pass: do the rows between slices in sequence. */
case 2:
b_deblock = 0;
b_measure_quality = 0;
break;
}
}
if( mb_y & SLICE_MBAFF )
return;
if( min_y < h->i_threadslice_start )
return;
if( b_deblock )
for( int y = min_y; y < mb_y; y += (1 << SLICE_MBAFF) )
x264_frame_deblock_row( h, y );
/* FIXME: Prediction requires different borders for interlaced/progressive mc,
* but the actual image data is equivalent. For now, maintain this
* consistency by copying deblocked pixels between planes. */
if( PARAM_INTERLACED && (!h->param.b_sliced_threads || pass == 1) )
for( int p = 0; p < h->fdec->i_plane; p++ )
for( int i = minpix_y>>(CHROMA_V_SHIFT && p); i < maxpix_y>>(CHROMA_V_SHIFT && p); i++ )
memcpy( h->fdec->plane_fld[p] + i*h->fdec->i_stride[p],
h->fdec->plane[p] + i*h->fdec->i_stride[p],
h->mb.i_mb_width*16*SIZEOF_PIXEL );
if( h->fdec->b_kept_as_ref && (!h->param.b_sliced_threads || pass == 1) )
x264_frame_expand_border( h, h->fdec, min_y );
if( b_hpel )
{
int end = mb_y == h->mb.i_mb_height;
/* Can't do hpel until the previous slice is done encoding. */
if( h->param.analyse.i_subpel_refine )
{
x264_frame_filter( h, h->fdec, min_y, end );
x264_frame_expand_border_filtered( h, h->fdec, min_y, end );
}
}
if( SLICE_MBAFF && pass == 0 )
for( int i = 0; i < 3; i++ )
{
XCHG( pixel *, h->intra_border_backup[0][i], h->intra_border_backup[3][i] );
XCHG( pixel *, h->intra_border_backup[1][i], h->intra_border_backup[4][i] );
}
if( h->i_thread_frames > 1 && h->fdec->b_kept_as_ref )
x264_frame_cond_broadcast( h->fdec, mb_y*16 + (b_end ? 10000 : -(X264_THREAD_HEIGHT << SLICE_MBAFF)) );
if( b_measure_quality )
{
maxpix_y = X264_MIN( maxpix_y, h->param.i_height );
if( h->param.analyse.b_psnr )
{
for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ )
h->stat.frame.i_ssd[p] += x264_pixel_ssd_wxh( &h->pixf,
h->fdec->plane[p] + minpix_y * h->fdec->i_stride[p], h->fdec->i_stride[p],
h->fenc->plane[p] + minpix_y * h->fenc->i_stride[p], h->fenc->i_stride[p],
h->param.i_width, maxpix_y-minpix_y );
if( !CHROMA444 )
{
uint64_t ssd_u, ssd_v;
int v_shift = CHROMA_V_SHIFT;
x264_pixel_ssd_nv12( &h->pixf,
h->fdec->plane[1] + (minpix_y>>v_shift) * h->fdec->i_stride[1], h->fdec->i_stride[1],
h->fenc->plane[1] + (minpix_y>>v_shift) * h->fenc->i_stride[1], h->fenc->i_stride[1],
h->param.i_width>>1, (maxpix_y-minpix_y)>>v_shift, &ssd_u, &ssd_v );
h->stat.frame.i_ssd[1] += ssd_u;
h->stat.frame.i_ssd[2] += ssd_v;
}
}
if( h->param.analyse.b_ssim )
{
int ssim_cnt;
x264_emms();
/* offset by 2 pixels to avoid alignment of ssim blocks with dct blocks,
* and overlap by 4 */
minpix_y += b_start ? 2 : -6;
h->stat.frame.f_ssim +=
x264_pixel_ssim_wxh( &h->pixf,
h->fdec->plane[0] + 2+minpix_y*h->fdec->i_stride[0], h->fdec->i_stride[0],
h->fenc->plane[0] + 2+minpix_y*h->fenc->i_stride[0], h->fenc->i_stride[0],
h->param.i_width-2, maxpix_y-minpix_y, h->scratch_buffer, &ssim_cnt );
h->stat.frame.i_ssim_cnt += ssim_cnt;
}
}
}
static inline int reference_update( x264_t *h )
{
if( !h->fdec->b_kept_as_ref )
{
if( h->i_thread_frames > 1 )
{
x264_frame_push_unused( h, h->fdec );
h->fdec = x264_frame_pop_unused( h, 1 );
if( !h->fdec )
return -1;
}
return 0;
}
/* apply mmco from previous frame. */
for( int i = 0; i < h->sh.i_mmco_command_count; i++ )
for( int j = 0; h->frames.reference[j]; j++ )
if( h->frames.reference[j]->i_poc == h->sh.mmco[i].i_poc )
x264_frame_push_unused( h, x264_frame_shift( &h->frames.reference[j] ) );
/* move frame in the buffer */
x264_frame_push( h->frames.reference, h->fdec );
if( h->frames.reference[h->sps->i_num_ref_frames] )
x264_frame_push_unused( h, x264_frame_shift( h->frames.reference ) );
h->fdec = x264_frame_pop_unused( h, 1 );
if( !h->fdec )
return -1;
return 0;
}
static inline void reference_reset( x264_t *h )
{
while( h->frames.reference[0] )
x264_frame_push_unused( h, x264_frame_pop( h->frames.reference ) );
h->fdec->i_poc =
h->fenc->i_poc = 0;
}
static inline void reference_hierarchy_reset( x264_t *h )
{
int ref;
int b_hasdelayframe = 0;
/* look for delay frames -- chain must only contain frames that are disposable */
for( int i = 0; h->frames.current[i] && IS_DISPOSABLE( h->frames.current[i]->i_type ); i++ )
b_hasdelayframe |= h->frames.current[i]->i_coded
!= h->frames.current[i]->i_frame + h->sps->vui.i_num_reorder_frames;
/* This function must handle b-pyramid and clear frames for open-gop */
if( h->param.i_bframe_pyramid != X264_B_PYRAMID_STRICT && !b_hasdelayframe && h->frames.i_poc_last_open_gop == -1 )
return;
/* Remove last BREF. There will never be old BREFs in the
* dpb during a BREF decode when pyramid == STRICT */
for( ref = 0; h->frames.reference[ref]; ref++ )
{
if( ( h->param.i_bframe_pyramid == X264_B_PYRAMID_STRICT
&& h->frames.reference[ref]->i_type == X264_TYPE_BREF )
|| ( h->frames.reference[ref]->i_poc < h->frames.i_poc_last_open_gop
&& h->sh.i_type != SLICE_TYPE_B ) )
{
int diff = h->i_frame_num - h->frames.reference[ref]->i_frame_num;
h->sh.mmco[h->sh.i_mmco_command_count].i_difference_of_pic_nums = diff;
h->sh.mmco[h->sh.i_mmco_command_count++].i_poc = h->frames.reference[ref]->i_poc;
x264_frame_push_unused( h, x264_frame_shift( &h->frames.reference[ref] ) );
h->b_ref_reorder[0] = 1;
ref--;
}
}
/* Prepare room in the dpb for the delayed display time of the later b-frame's */
if( h->param.i_bframe_pyramid )
h->sh.i_mmco_remove_from_end = X264_MAX( ref + 2 - h->frames.i_max_dpb, 0 );
}
static inline void slice_init( x264_t *h, int i_nal_type, int i_global_qp )
{
/* ------------------------ Create slice header ----------------------- */
if( i_nal_type == NAL_SLICE_IDR )
{
slice_header_init( h, &h->sh, h->sps, h->pps, h->i_idr_pic_id, h->i_frame_num, i_global_qp );
/* alternate id */
if( h->param.i_avcintra_class )
{
switch( h->i_idr_pic_id )
{
case 5:
h->i_idr_pic_id = 3;
break;
case 3:
h->i_idr_pic_id = 4;
break;
case 4:
default:
h->i_idr_pic_id = 5;
break;
}
}
else
h->i_idr_pic_id ^= 1;
}
else
{
slice_header_init( h, &h->sh, h->sps, h->pps, -1, h->i_frame_num, i_global_qp );
h->sh.i_num_ref_idx_l0_active = h->i_ref[0] <= 0 ? 1 : h->i_ref[0];
h->sh.i_num_ref_idx_l1_active = h->i_ref[1] <= 0 ? 1 : h->i_ref[1];
if( h->sh.i_num_ref_idx_l0_active != h->pps->i_num_ref_idx_l0_default_active ||
(h->sh.i_type == SLICE_TYPE_B && h->sh.i_num_ref_idx_l1_active != h->pps->i_num_ref_idx_l1_default_active) )
{
h->sh.b_num_ref_idx_override = 1;
}
}
if( h->fenc->i_type == X264_TYPE_BREF && h->param.b_bluray_compat && h->sh.i_mmco_command_count )
{
h->b_sh_backup = 1;
h->sh_backup = h->sh;
}
h->fdec->i_frame_num = h->sh.i_frame_num;
if( h->sps->i_poc_type == 0 )
{
h->sh.i_poc = h->fdec->i_poc;
if( PARAM_INTERLACED )
{
h->sh.i_delta_poc_bottom = h->param.b_tff ? 1 : -1;
h->sh.i_poc += h->sh.i_delta_poc_bottom == -1;
}
else
h->sh.i_delta_poc_bottom = 0;
h->fdec->i_delta_poc[0] = h->sh.i_delta_poc_bottom == -1;
h->fdec->i_delta_poc[1] = h->sh.i_delta_poc_bottom == 1;
}
else
{
/* Nothing to do ? */
}
x264_macroblock_slice_init( h );
}
typedef struct
{
int skip;
uint8_t cabac_prevbyte;
bs_t bs;
x264_cabac_t cabac;
x264_frame_stat_t stat;
int last_qp;
int last_dqp;
int field_decoding_flag;
} x264_bs_bak_t;
static ALWAYS_INLINE void bitstream_backup( x264_t *h, x264_bs_bak_t *bak, int i_skip, int full )
{
if( full )
{
bak->stat = h->stat.frame;
bak->last_qp = h->mb.i_last_qp;
bak->last_dqp = h->mb.i_last_dqp;
bak->field_decoding_flag = h->mb.field_decoding_flag;
}
else
{
bak->stat.i_mv_bits = h->stat.frame.i_mv_bits;
bak->stat.i_tex_bits = h->stat.frame.i_tex_bits;
}
/* In the per-MB backup, we don't need the contexts because flushing the CABAC
* encoder has no context dependency and in this case, a slice is ended (and
* thus the content of all contexts are thrown away). */
if( h->param.b_cabac )
{
if( full )
memcpy( &bak->cabac, &h->cabac, sizeof(x264_cabac_t) );
else
memcpy( &bak->cabac, &h->cabac, offsetof(x264_cabac_t, f8_bits_encoded) );
/* x264's CABAC writer modifies the previous byte during carry, so it has to be
* backed up. */
bak->cabac_prevbyte = h->cabac.p[-1];
}
else
{
bak->bs = h->out.bs;
bak->skip = i_skip;
}
}
static ALWAYS_INLINE void bitstream_restore( x264_t *h, x264_bs_bak_t *bak, int *skip, int full )
{
if( full )
{
h->stat.frame = bak->stat;
h->mb.i_last_qp = bak->last_qp;
h->mb.i_last_dqp = bak->last_dqp;
h->mb.field_decoding_flag = bak->field_decoding_flag;
}
else
{
h->stat.frame.i_mv_bits = bak->stat.i_mv_bits;
h->stat.frame.i_tex_bits = bak->stat.i_tex_bits;
}
if( h->param.b_cabac )
{
if( full )
memcpy( &h->cabac, &bak->cabac, sizeof(x264_cabac_t) );
else
memcpy( &h->cabac, &bak->cabac, offsetof(x264_cabac_t, f8_bits_encoded) );
h->cabac.p[-1] = bak->cabac_prevbyte;
}
else
{
h->out.bs = bak->bs;
*skip = bak->skip;
}
}
static intptr_t slice_write( x264_t *h )
{
int i_skip;
int mb_xy, i_mb_x, i_mb_y;
/* NALUs other than the first use a 3-byte startcode.
* Add one extra byte for the rbsp, and one more for the final CABAC putbyte.
* Then add an extra 5 bytes just in case, to account for random NAL escapes and
* other inaccuracies. */
int overhead_guess = (NALU_OVERHEAD - (h->param.b_annexb && h->out.i_nal)) + 1 + h->param.b_cabac + 5;
int slice_max_size = h->param.i_slice_max_size > 0 ? (h->param.i_slice_max_size-overhead_guess)*8 : 0;
int back_up_bitstream_cavlc = !h->param.b_cabac && h->sps->i_profile_idc < PROFILE_HIGH;
int back_up_bitstream = slice_max_size || back_up_bitstream_cavlc;
int starting_bits = bs_pos(&h->out.bs);
int b_deblock = h->sh.i_disable_deblocking_filter_idc != 1;
int b_hpel = h->fdec->b_kept_as_ref;
int orig_last_mb = h->sh.i_last_mb;
int thread_last_mb = h->i_threadslice_end * h->mb.i_mb_width - 1;
uint8_t *last_emu_check;
#define BS_BAK_SLICE_MAX_SIZE 0
#define BS_BAK_CAVLC_OVERFLOW 1
#define BS_BAK_SLICE_MIN_MBS 2
#define BS_BAK_ROW_VBV 3
x264_bs_bak_t bs_bak[4];
b_deblock &= b_hpel || h->param.b_full_recon || h->param.psz_dump_yuv;
bs_realign( &h->out.bs );
/* Slice */
nal_start( h, h->i_nal_type, h->i_nal_ref_idc );
h->out.nal[h->out.i_nal].i_first_mb = h->sh.i_first_mb;
/* Slice header */
x264_macroblock_thread_init( h );
/* Set the QP equal to the first QP in the slice for more accurate CABAC initialization. */
h->mb.i_mb_xy = h->sh.i_first_mb;
h->sh.i_qp = x264_ratecontrol_mb_qp( h );
h->sh.i_qp = SPEC_QP( h->sh.i_qp );
h->sh.i_qp_delta = h->sh.i_qp - h->pps->i_pic_init_qp;
slice_header_write( &h->out.bs, &h->sh, h->i_nal_ref_idc );
if( h->param.b_cabac )
{
/* alignment needed */
bs_align_1( &h->out.bs );
/* init cabac */
x264_cabac_context_init( h, &h->cabac, h->sh.i_type, x264_clip3( h->sh.i_qp-QP_BD_OFFSET, 0, 51 ), h->sh.i_cabac_init_idc );
x264_cabac_encode_init ( &h->cabac, h->out.bs.p, h->out.bs.p_end );
last_emu_check = h->cabac.p;
}
else
last_emu_check = h->out.bs.p;
h->mb.i_last_qp = h->sh.i_qp;
h->mb.i_last_dqp = 0;
h->mb.field_decoding_flag = 0;
i_mb_y = h->sh.i_first_mb / h->mb.i_mb_width;
i_mb_x = h->sh.i_first_mb % h->mb.i_mb_width;
i_skip = 0;
while( 1 )
{
mb_xy = i_mb_x + i_mb_y * h->mb.i_mb_width;
int mb_spos = bs_pos(&h->out.bs) + x264_cabac_pos(&h->cabac);
if( i_mb_x == 0 )
{
if( bitstream_check_buffer( h ) )
return -1;
if( !(i_mb_y & SLICE_MBAFF) && h->param.rc.i_vbv_buffer_size )
bitstream_backup( h, &bs_bak[BS_BAK_ROW_VBV], i_skip, 1 );
if( !h->mb.b_reencode_mb )
fdec_filter_row( h, i_mb_y, 0 );
}
if( back_up_bitstream )
{
if( back_up_bitstream_cavlc )
bitstream_backup( h, &bs_bak[BS_BAK_CAVLC_OVERFLOW], i_skip, 0 );
if( slice_max_size && !(i_mb_y & SLICE_MBAFF) )
{
bitstream_backup( h, &bs_bak[BS_BAK_SLICE_MAX_SIZE], i_skip, 0 );
if( (thread_last_mb+1-mb_xy) == h->param.i_slice_min_mbs )
bitstream_backup( h, &bs_bak[BS_BAK_SLICE_MIN_MBS], i_skip, 0 );
}
}
if( PARAM_INTERLACED )
{
if( h->mb.b_adaptive_mbaff )
{
if( !(i_mb_y&1) )
{
/* FIXME: VSAD is fast but fairly poor at choosing the best interlace type. */
h->mb.b_interlaced = x264_field_vsad( h, i_mb_x, i_mb_y );
memcpy( &h->zigzagf, MB_INTERLACED ? &h->zigzagf_interlaced : &h->zigzagf_progressive, sizeof(h->zigzagf) );
if( !MB_INTERLACED && (i_mb_y+2) == h->mb.i_mb_height )
x264_expand_border_mbpair( h, i_mb_x, i_mb_y );
}
}
h->mb.field[mb_xy] = MB_INTERLACED;
}
/* load cache */
if( SLICE_MBAFF )
x264_macroblock_cache_load_interlaced( h, i_mb_x, i_mb_y );
else
x264_macroblock_cache_load_progressive( h, i_mb_x, i_mb_y );
x264_macroblock_analyse( h );
/* encode this macroblock -> be careful it can change the mb type to P_SKIP if needed */
reencode:
x264_macroblock_encode( h );
if( h->param.b_cabac )
{
if( mb_xy > h->sh.i_first_mb && !(SLICE_MBAFF && (i_mb_y&1)) )
x264_cabac_encode_terminal( &h->cabac );
if( IS_SKIP( h->mb.i_type ) )
x264_cabac_mb_skip( h, 1 );
else
{
if( h->sh.i_type != SLICE_TYPE_I )
x264_cabac_mb_skip( h, 0 );
x264_macroblock_write_cabac( h, &h->cabac );
}
}
else
{
if( IS_SKIP( h->mb.i_type ) )
i_skip++;
else
{
if( h->sh.i_type != SLICE_TYPE_I )
{
bs_write_ue( &h->out.bs, i_skip ); /* skip run */
i_skip = 0;
}
x264_macroblock_write_cavlc( h );
/* If there was a CAVLC level code overflow, try again at a higher QP. */
if( h->mb.b_overflow )
{
h->mb.i_chroma_qp = h->chroma_qp_table[++h->mb.i_qp];
h->mb.i_skip_intra = 0;
h->mb.b_skip_mc = 0;
h->mb.b_overflow = 0;
bitstream_restore( h, &bs_bak[BS_BAK_CAVLC_OVERFLOW], &i_skip, 0 );
goto reencode;
}
}
}
int total_bits = bs_pos(&h->out.bs) + x264_cabac_pos(&h->cabac);
int mb_size = total_bits - mb_spos;
if( slice_max_size && (!SLICE_MBAFF || (i_mb_y&1)) )
{
/* Count the skip run, just in case. */
if( !h->param.b_cabac )
total_bits += bs_size_ue_big( i_skip );
/* Check for escape bytes. */
uint8_t *end = h->param.b_cabac ? h->cabac.p : h->out.bs.p;
for( ; last_emu_check < end - 2; last_emu_check++ )
if( last_emu_check[0] == 0 && last_emu_check[1] == 0 && last_emu_check[2] <= 3 )
{
slice_max_size -= 8;
last_emu_check++;
}
/* We'll just re-encode this last macroblock if we go over the max slice size. */
if( total_bits - starting_bits > slice_max_size && !h->mb.b_reencode_mb )
{
if( !x264_frame_new_slice( h, h->fdec ) )
{
/* Handle the most obnoxious slice-min-mbs edge case: we need to end the slice
* because it's gone over the maximum size, but doing so would violate slice-min-mbs.
* If possible, roll back to the last checkpoint and try again.
* We could try raising QP, but that would break in the case where a slice spans multiple
* rows, which the re-encoding infrastructure can't currently handle. */
if( mb_xy <= thread_last_mb && (thread_last_mb+1-mb_xy) < h->param.i_slice_min_mbs )
{
if( thread_last_mb-h->param.i_slice_min_mbs < h->sh.i_first_mb+h->param.i_slice_min_mbs )
{
x264_log( h, X264_LOG_WARNING, "slice-max-size violated (frame %d, cause: slice-min-mbs)\n", h->i_frame );
slice_max_size = 0;
goto cont;
}
bitstream_restore( h, &bs_bak[BS_BAK_SLICE_MIN_MBS], &i_skip, 0 );
h->mb.b_reencode_mb = 1;
h->sh.i_last_mb = thread_last_mb-h->param.i_slice_min_mbs;
break;
}
if( mb_xy-SLICE_MBAFF*h->mb.i_mb_stride != h->sh.i_first_mb )
{
bitstream_restore( h, &bs_bak[BS_BAK_SLICE_MAX_SIZE], &i_skip, 0 );
h->mb.b_reencode_mb = 1;
if( SLICE_MBAFF )
{
// set to bottom of previous mbpair
if( i_mb_x )
h->sh.i_last_mb = mb_xy-1+h->mb.i_mb_stride*(!(i_mb_y&1));
else
h->sh.i_last_mb = (i_mb_y-2+!(i_mb_y&1))*h->mb.i_mb_stride + h->mb.i_mb_width - 1;
}
else
h->sh.i_last_mb = mb_xy-1;
break;
}
else
h->sh.i_last_mb = mb_xy;
}
else
slice_max_size = 0;
}
}
cont:
h->mb.b_reencode_mb = 0;
/* save cache */
x264_macroblock_cache_save( h );
if( x264_ratecontrol_mb( h, mb_size ) < 0 )
{
bitstream_restore( h, &bs_bak[BS_BAK_ROW_VBV], &i_skip, 1 );
h->mb.b_reencode_mb = 1;
i_mb_x = 0;
i_mb_y = i_mb_y - SLICE_MBAFF;
h->mb.i_mb_prev_xy = i_mb_y * h->mb.i_mb_stride - 1;
h->sh.i_last_mb = orig_last_mb;
continue;
}
/* accumulate mb stats */
h->stat.frame.i_mb_count[h->mb.i_type]++;
int b_intra = IS_INTRA( h->mb.i_type );
int b_skip = IS_SKIP( h->mb.i_type );
if( h->param.i_log_level >= X264_LOG_INFO || h->param.rc.b_stat_write )
{
if( !b_intra && !b_skip && !IS_DIRECT( h->mb.i_type ) )
{
if( h->mb.i_partition != D_8x8 )
h->stat.frame.i_mb_partition[h->mb.i_partition] += 4;
else
for( int i = 0; i < 4; i++ )
h->stat.frame.i_mb_partition[h->mb.i_sub_partition[i]] ++;
if( h->param.i_frame_reference > 1 )
for( int i_list = 0; i_list <= (h->sh.i_type == SLICE_TYPE_B); i_list++ )
for( int i = 0; i < 4; i++ )
{
int i_ref = h->mb.cache.ref[i_list][ x264_scan8[4*i] ];
if( i_ref >= 0 )
h->stat.frame.i_mb_count_ref[i_list][i_ref] ++;
}
}
}
if( h->param.i_log_level >= X264_LOG_INFO )
{
if( h->mb.i_cbp_luma | h->mb.i_cbp_chroma )
{
if( CHROMA444 )
{
for( int i = 0; i < 4; i++ )
if( h->mb.i_cbp_luma & (1 << i) )
for( int p = 0; p < 3; p++ )
{
int s8 = i*4+p*16;
int nnz8x8 = M16( &h->mb.cache.non_zero_count[x264_scan8[s8]+0] )
| M16( &h->mb.cache.non_zero_count[x264_scan8[s8]+8] );
h->stat.frame.i_mb_cbp[!b_intra + p*2] += !!nnz8x8;
}
}
else
{
int cbpsum = (h->mb.i_cbp_luma&1) + ((h->mb.i_cbp_luma>>1)&1)
+ ((h->mb.i_cbp_luma>>2)&1) + (h->mb.i_cbp_luma>>3);
h->stat.frame.i_mb_cbp[!b_intra + 0] += cbpsum;
h->stat.frame.i_mb_cbp[!b_intra + 2] += !!h->mb.i_cbp_chroma;
h->stat.frame.i_mb_cbp[!b_intra + 4] += h->mb.i_cbp_chroma >> 1;
}
}
if( h->mb.i_cbp_luma && !b_intra )
{
h->stat.frame.i_mb_count_8x8dct[0] ++;
h->stat.frame.i_mb_count_8x8dct[1] += h->mb.b_transform_8x8;
}
if( b_intra && h->mb.i_type != I_PCM )
{
if( h->mb.i_type == I_16x16 )
h->stat.frame.i_mb_pred_mode[0][h->mb.i_intra16x16_pred_mode]++;
else if( h->mb.i_type == I_8x8 )
for( int i = 0; i < 16; i += 4 )
h->stat.frame.i_mb_pred_mode[1][h->mb.cache.intra4x4_pred_mode[x264_scan8[i]]]++;
else //if( h->mb.i_type == I_4x4 )
for( int i = 0; i < 16; i++ )
h->stat.frame.i_mb_pred_mode[2][h->mb.cache.intra4x4_pred_mode[x264_scan8[i]]]++;
h->stat.frame.i_mb_pred_mode[3][x264_mb_chroma_pred_mode_fix[h->mb.i_chroma_pred_mode]]++;
}
h->stat.frame.i_mb_field[b_intra?0:b_skip?2:1] += MB_INTERLACED;
}
/* calculate deblock strength values (actual deblocking is done per-row along with hpel) */
if( b_deblock )
x264_macroblock_deblock_strength( h );
if( mb_xy == h->sh.i_last_mb )
break;
if( SLICE_MBAFF )
{
i_mb_x += i_mb_y & 1;
i_mb_y ^= i_mb_x < h->mb.i_mb_width;
}
else
i_mb_x++;
if( i_mb_x == h->mb.i_mb_width )
{
i_mb_y++;
i_mb_x = 0;
}
}
if( h->sh.i_last_mb < h->sh.i_first_mb )
return 0;
h->out.nal[h->out.i_nal].i_last_mb = h->sh.i_last_mb;
if( h->param.b_cabac )
{
x264_cabac_encode_flush( h, &h->cabac );
h->out.bs.p = h->cabac.p;
}
else
{
if( i_skip > 0 )
bs_write_ue( &h->out.bs, i_skip ); /* last skip run */
/* rbsp_slice_trailing_bits */
bs_rbsp_trailing( &h->out.bs );
bs_flush( &h->out.bs );
}
if( nal_end( h ) )
return -1;
if( h->sh.i_last_mb == (h->i_threadslice_end * h->mb.i_mb_width - 1) )
{
h->stat.frame.i_misc_bits = bs_pos( &h->out.bs )
+ (h->out.i_nal*NALU_OVERHEAD * 8)
- h->stat.frame.i_tex_bits
- h->stat.frame.i_mv_bits;
fdec_filter_row( h, h->i_threadslice_end, 0 );
if( h->param.b_sliced_threads )
{
/* Tell the main thread we're done. */
x264_threadslice_cond_broadcast( h, 1 );
/* Do hpel now */
for( int mb_y = h->i_threadslice_start; mb_y <= h->i_threadslice_end; mb_y++ )
fdec_filter_row( h, mb_y, 1 );
x264_threadslice_cond_broadcast( h, 2 );
/* Do the first row of hpel, now that the previous slice is done */
if( h->i_thread_idx > 0 )
{
x264_threadslice_cond_wait( h->thread[h->i_thread_idx-1], 2 );
fdec_filter_row( h, h->i_threadslice_start + (1 << SLICE_MBAFF), 2 );
}
}
/* Free mb info after the last thread's done using it */
if( h->fdec->mb_info_free && (!h->param.b_sliced_threads || h->i_thread_idx == (h->param.i_threads-1)) )
{
h->fdec->mb_info_free( h->fdec->mb_info );
h->fdec->mb_info = NULL;
h->fdec->mb_info_free = NULL;
}
}
return 0;
}
static void thread_sync_context( x264_t *dst, x264_t *src )
{
if( dst == src )
return;
// reference counting
for( x264_frame_t **f = src->frames.reference; *f; f++ )
(*f)->i_reference_count++;
for( x264_frame_t **f = dst->frames.reference; *f; f++ )
x264_frame_push_unused( src, *f );
src->fdec->i_reference_count++;
x264_frame_push_unused( src, dst->fdec );
// copy everything except the per-thread pointers and the constants.
memcpy( &dst->i_frame, &src->i_frame, offsetof(x264_t, mb.base) - offsetof(x264_t, i_frame) );
dst->param = src->param;
dst->stat = src->stat;
dst->pixf = src->pixf;
dst->reconfig = src->reconfig;
}
static void thread_sync_stat( x264_t *dst, x264_t *src )
{
if( dst != src )
memcpy( &dst->stat, &src->stat, offsetof(x264_t, stat.frame) - offsetof(x264_t, stat) );
}
static void *slices_write( x264_t *h )
{
int i_slice_num = 0;
int last_thread_mb = h->sh.i_last_mb;
int round_bias = h->param.i_avcintra_class ? 0 : h->param.i_slice_count/2;
/* init stats */
memset( &h->stat.frame, 0, sizeof(h->stat.frame) );
h->mb.b_reencode_mb = 0;
while( h->sh.i_first_mb + SLICE_MBAFF*h->mb.i_mb_stride <= last_thread_mb )
{
h->sh.i_last_mb = last_thread_mb;
if( !i_slice_num || !x264_frame_new_slice( h, h->fdec ) )
{
if( h->param.i_slice_max_mbs )
{
if( SLICE_MBAFF )
{
// convert first to mbaff form, add slice-max-mbs, then convert back to normal form
int last_mbaff = 2*(h->sh.i_first_mb % h->mb.i_mb_width)
+ h->mb.i_mb_width*(h->sh.i_first_mb / h->mb.i_mb_width)
+ h->param.i_slice_max_mbs - 1;
int last_x = (last_mbaff % (2*h->mb.i_mb_width))/2;
int last_y = (last_mbaff / (2*h->mb.i_mb_width))*2 + 1;
h->sh.i_last_mb = last_x + h->mb.i_mb_stride*last_y;
}
else
{
h->sh.i_last_mb = h->sh.i_first_mb + h->param.i_slice_max_mbs - 1;
if( h->sh.i_last_mb < last_thread_mb && last_thread_mb - h->sh.i_last_mb < h->param.i_slice_min_mbs )
h->sh.i_last_mb = last_thread_mb - h->param.i_slice_min_mbs;
}
i_slice_num++;
}
else if( h->param.i_slice_count && !h->param.b_sliced_threads )
{
int height = h->mb.i_mb_height >> PARAM_INTERLACED;
int width = h->mb.i_mb_width << PARAM_INTERLACED;
i_slice_num++;
h->sh.i_last_mb = (height * i_slice_num + round_bias) / h->param.i_slice_count * width - 1;
}
}
h->sh.i_last_mb = X264_MIN( h->sh.i_last_mb, last_thread_mb );
if( slice_write( h ) )
goto fail;
h->sh.i_first_mb = h->sh.i_last_mb + 1;
// if i_first_mb is not the last mb in a row then go to the next mb in MBAFF order
if( SLICE_MBAFF && h->sh.i_first_mb % h->mb.i_mb_width )
h->sh.i_first_mb -= h->mb.i_mb_stride;
}
return (void *)0;
fail:
/* Tell other threads we're done, so they wouldn't wait for it */
if( h->param.b_sliced_threads )
x264_threadslice_cond_broadcast( h, 2 );
return (void *)-1;
}
static int threaded_slices_write( x264_t *h )
{
int round_bias = h->param.i_avcintra_class ? 0 : h->param.i_slice_count/2;
/* set first/last mb and sync contexts */
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
if( i )
{
t->param = h->param;
memcpy( &t->i_frame, &h->i_frame, offsetof(x264_t, rc) - offsetof(x264_t, i_frame) );
}
int height = h->mb.i_mb_height >> PARAM_INTERLACED;
t->i_threadslice_start = ((height * i + round_bias) / h->param.i_threads) << PARAM_INTERLACED;
t->i_threadslice_end = ((height * (i+1) + round_bias) / h->param.i_threads) << PARAM_INTERLACED;
t->sh.i_first_mb = t->i_threadslice_start * h->mb.i_mb_width;
t->sh.i_last_mb = t->i_threadslice_end * h->mb.i_mb_width - 1;
}
x264_analyse_weight_frame( h, h->mb.i_mb_height*16 + 16 );
x264_threads_distribute_ratecontrol( h );
/* setup */
for( int i = 0; i < h->param.i_threads; i++ )
{
h->thread[i]->i_thread_idx = i;
h->thread[i]->b_thread_active = 1;
x264_threadslice_cond_broadcast( h->thread[i], 0 );
}
/* dispatch */
for( int i = 0; i < h->param.i_threads; i++ )
x264_threadpool_run( h->threadpool, (void*)slices_write, h->thread[i] );
/* wait */
for( int i = 0; i < h->param.i_threads; i++ )
x264_threadslice_cond_wait( h->thread[i], 1 );
x264_threads_merge_ratecontrol( h );
for( int i = 1; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
for( int j = 0; j < t->out.i_nal; j++ )
{
h->out.nal[h->out.i_nal] = t->out.nal[j];
h->out.i_nal++;
nal_check_buffer( h );
}
/* All entries in stat.frame are ints except for ssd/ssim. */
for( size_t j = 0; j < (offsetof(x264_t,stat.frame.i_ssd) - offsetof(x264_t,stat.frame.i_mv_bits)) / sizeof(int); j++ )
((int*)&h->stat.frame)[j] += ((int*)&t->stat.frame)[j];
for( int j = 0; j < 3; j++ )
h->stat.frame.i_ssd[j] += t->stat.frame.i_ssd[j];
h->stat.frame.f_ssim += t->stat.frame.f_ssim;
h->stat.frame.i_ssim_cnt += t->stat.frame.i_ssim_cnt;
}
return 0;
}
void x264_encoder_intra_refresh( x264_t *h )
{
h = h->thread[h->i_thread_phase];
h->b_queued_intra_refresh = 1;
}
int x264_encoder_invalidate_reference( x264_t *h, int64_t pts )
{
if( h->param.i_bframe )
{
x264_log( h, X264_LOG_ERROR, "x264_encoder_invalidate_reference is not supported with B-frames enabled\n" );
return -1;
}
if( h->param.b_intra_refresh )
{
x264_log( h, X264_LOG_ERROR, "x264_encoder_invalidate_reference is not supported with intra refresh enabled\n" );
return -1;
}
h = h->thread[h->i_thread_phase];
if( pts >= h->i_last_idr_pts )
{
for( int i = 0; h->frames.reference[i]; i++ )
if( pts <= h->frames.reference[i]->i_pts )
h->frames.reference[i]->b_corrupt = 1;
if( pts <= h->fdec->i_pts )
h->fdec->b_corrupt = 1;
}
return 0;
}
/****************************************************************************
* x264_encoder_encode:
* XXX: i_poc : is the poc of the current given picture
* i_frame : is the number of the frame being coded
* ex: type frame poc
* I 0 2*0
* P 1 2*3
* B 2 2*1
* B 3 2*2
* P 4 2*6
* B 5 2*4
* B 6 2*5
****************************************************************************/
int x264_encoder_encode( x264_t *h,
x264_nal_t **pp_nal, int *pi_nal,
x264_picture_t *pic_in,
x264_picture_t *pic_out )
{
x264_t *thread_current, *thread_prev, *thread_oldest;
int i_nal_type, i_nal_ref_idc, i_global_qp;
int overhead = NALU_OVERHEAD;
#if HAVE_OPENCL
if( h->opencl.b_fatal_error )
return -1;
#endif
if( h->i_thread_frames > 1 )
{
thread_prev = h->thread[ h->i_thread_phase ];
h->i_thread_phase = (h->i_thread_phase + 1) % h->i_thread_frames;
thread_current = h->thread[ h->i_thread_phase ];
thread_oldest = h->thread[ (h->i_thread_phase + 1) % h->i_thread_frames ];
thread_sync_context( thread_current, thread_prev );
x264_thread_sync_ratecontrol( thread_current, thread_prev, thread_oldest );
h = thread_current;
}
else
{
thread_current =
thread_oldest = h;
}
h->i_cpb_delay_pir_offset = h->i_cpb_delay_pir_offset_next;
/* no data out */
*pi_nal = 0;
*pp_nal = NULL;
/* ------------------- Setup new frame from picture -------------------- */
if( pic_in != NULL )
{
if( h->lookahead->b_exit_thread )
{
x264_log( h, X264_LOG_ERROR, "lookahead thread is already stopped\n" );
return -1;
}
/* 1: Copy the picture to a frame and move it to a buffer */
x264_frame_t *fenc = x264_frame_pop_unused( h, 0 );
if( !fenc )
return -1;
if( x264_frame_copy_picture( h, fenc, pic_in ) < 0 )
return -1;
if( h->param.i_width != 16 * h->mb.i_mb_width ||
h->param.i_height != 16 * h->mb.i_mb_height )
x264_frame_expand_border_mod16( h, fenc );
fenc->i_frame = h->frames.i_input++;
if( fenc->i_frame == 0 )
h->frames.i_first_pts = fenc->i_pts;
if( h->frames.i_bframe_delay && fenc->i_frame == h->frames.i_bframe_delay )
h->frames.i_bframe_delay_time = fenc->i_pts - h->frames.i_first_pts;
if( h->param.b_vfr_input && fenc->i_pts <= h->frames.i_largest_pts )
x264_log( h, X264_LOG_WARNING, "non-strictly-monotonic PTS\n" );
h->frames.i_second_largest_pts = h->frames.i_largest_pts;
h->frames.i_largest_pts = fenc->i_pts;
if( (fenc->i_pic_struct < PIC_STRUCT_AUTO) || (fenc->i_pic_struct > PIC_STRUCT_TRIPLE) )
fenc->i_pic_struct = PIC_STRUCT_AUTO;
if( fenc->i_pic_struct == PIC_STRUCT_AUTO )
{
#if HAVE_INTERLACED
int b_interlaced = fenc->param ? fenc->param->b_interlaced : h->param.b_interlaced;
#else
int b_interlaced = 0;
#endif
if( b_interlaced )
{
int b_tff = fenc->param ? fenc->param->b_tff : h->param.b_tff;
fenc->i_pic_struct = b_tff ? PIC_STRUCT_TOP_BOTTOM : PIC_STRUCT_BOTTOM_TOP;
}
else
fenc->i_pic_struct = PIC_STRUCT_PROGRESSIVE;
}
if( h->param.rc.b_mb_tree && h->param.rc.b_stat_read )
{
if( x264_macroblock_tree_read( h, fenc, pic_in->prop.quant_offsets ) )
return -1;
}
else
x264_adaptive_quant_frame( h, fenc, pic_in->prop.quant_offsets );
if( pic_in->prop.quant_offsets_free )
pic_in->prop.quant_offsets_free( pic_in->prop.quant_offsets );
if( h->frames.b_have_lowres )
x264_frame_init_lowres( h, fenc );
/* 2: Place the frame into the queue for its slice type decision */
x264_lookahead_put_frame( h, fenc );
if( h->frames.i_input <= h->frames.i_delay + 1 - h->i_thread_frames )
{
/* Nothing yet to encode, waiting for filling of buffers */
pic_out->i_type = X264_TYPE_AUTO;
return 0;
}
}
else
{
/* signal kills for lookahead thread */
x264_pthread_mutex_lock( &h->lookahead->ifbuf.mutex );
h->lookahead->b_exit_thread = 1;
x264_pthread_cond_broadcast( &h->lookahead->ifbuf.cv_fill );
x264_pthread_mutex_unlock( &h->lookahead->ifbuf.mutex );
}
h->i_frame++;
/* 3: The picture is analyzed in the lookahead */
if( !h->frames.current[0] )
x264_lookahead_get_frames( h );
if( !h->frames.current[0] && x264_lookahead_is_empty( h ) )
return encoder_frame_end( thread_oldest, thread_current, pp_nal, pi_nal, pic_out );
/* ------------------- Get frame to be encoded ------------------------- */
/* 4: get picture to encode */
h->fenc = x264_frame_shift( h->frames.current );
/* If applicable, wait for previous frame reconstruction to finish */
if( h->param.b_sliced_threads )
if( threadpool_wait_all( h ) < 0 )
return -1;
if( h->i_frame == 0 )
h->i_reordered_pts_delay = h->fenc->i_reordered_pts;
if( h->reconfig )
{
x264_encoder_reconfig_apply( h, &h->reconfig_h->param );
h->reconfig = 0;
}
if( h->fenc->param )
{
x264_encoder_reconfig_apply( h, h->fenc->param );
if( h->fenc->param->param_free )
{
x264_param_cleanup( h->fenc->param );
h->fenc->param->param_free( h->fenc->param );
h->fenc->param = NULL;
}
}
x264_ratecontrol_zone_init( h );
// ok to call this before encoding any frames, since the initial values of fdec have b_kept_as_ref=0
if( reference_update( h ) )
return -1;
h->fdec->i_lines_completed = -1;
if( !IS_X264_TYPE_I( h->fenc->i_type ) )
{
int valid_refs_left = 0;
for( int i = 0; h->frames.reference[i]; i++ )
if( !h->frames.reference[i]->b_corrupt )
valid_refs_left++;
/* No valid reference frames left: force an IDR. */
if( !valid_refs_left )
{
h->fenc->b_keyframe = 1;
h->fenc->i_type = X264_TYPE_IDR;
}
}
if( h->fenc->b_keyframe )
{
h->frames.i_last_keyframe = h->fenc->i_frame;
if( h->fenc->i_type == X264_TYPE_IDR )
{
h->i_frame_num = 0;
h->frames.i_last_idr = h->fenc->i_frame;
}
}
h->sh.i_mmco_command_count =
h->sh.i_mmco_remove_from_end = 0;
h->b_ref_reorder[0] =
h->b_ref_reorder[1] = 0;
h->fdec->i_poc =
h->fenc->i_poc = 2 * ( h->fenc->i_frame - X264_MAX( h->frames.i_last_idr, 0 ) );
/* ------------------- Setup frame context ----------------------------- */
/* 5: Init data dependent of frame type */
if( h->fenc->i_type == X264_TYPE_IDR )
{
/* reset ref pictures */
i_nal_type = NAL_SLICE_IDR;
i_nal_ref_idc = NAL_PRIORITY_HIGHEST;
h->sh.i_type = SLICE_TYPE_I;
reference_reset( h );
h->frames.i_poc_last_open_gop = -1;
}
else if( h->fenc->i_type == X264_TYPE_I )
{
i_nal_type = NAL_SLICE;
i_nal_ref_idc = NAL_PRIORITY_HIGH; /* Not completely true but for now it is (as all I/P are kept as ref)*/
h->sh.i_type = SLICE_TYPE_I;
reference_hierarchy_reset( h );
if( h->param.b_open_gop )
h->frames.i_poc_last_open_gop = h->fenc->b_keyframe ? h->fenc->i_poc : -1;
}
else if( h->fenc->i_type == X264_TYPE_P )
{
i_nal_type = NAL_SLICE;
i_nal_ref_idc = NAL_PRIORITY_HIGH; /* Not completely true but for now it is (as all I/P are kept as ref)*/
h->sh.i_type = SLICE_TYPE_P;
reference_hierarchy_reset( h );
h->frames.i_poc_last_open_gop = -1;
}
else if( h->fenc->i_type == X264_TYPE_BREF )
{
i_nal_type = NAL_SLICE;
i_nal_ref_idc = h->param.i_bframe_pyramid == X264_B_PYRAMID_STRICT ? NAL_PRIORITY_LOW : NAL_PRIORITY_HIGH;
h->sh.i_type = SLICE_TYPE_B;
reference_hierarchy_reset( h );
}
else /* B frame */
{
i_nal_type = NAL_SLICE;
i_nal_ref_idc = NAL_PRIORITY_DISPOSABLE;
h->sh.i_type = SLICE_TYPE_B;
}
h->fdec->i_type = h->fenc->i_type;
h->fdec->i_frame = h->fenc->i_frame;
h->fenc->b_kept_as_ref =
h->fdec->b_kept_as_ref = i_nal_ref_idc != NAL_PRIORITY_DISPOSABLE && h->param.i_keyint_max > 1;
h->fdec->mb_info = h->fenc->mb_info;
h->fdec->mb_info_free = h->fenc->mb_info_free;
h->fenc->mb_info = NULL;
h->fenc->mb_info_free = NULL;
h->fdec->i_pts = h->fenc->i_pts;
if( h->frames.i_bframe_delay )
{
int64_t *prev_reordered_pts = thread_current->frames.i_prev_reordered_pts;
h->fdec->i_dts = h->i_frame > h->frames.i_bframe_delay
? prev_reordered_pts[ (h->i_frame - h->frames.i_bframe_delay) % h->frames.i_bframe_delay ]
: h->fenc->i_reordered_pts - h->frames.i_bframe_delay_time;
prev_reordered_pts[ h->i_frame % h->frames.i_bframe_delay ] = h->fenc->i_reordered_pts;
}
else
h->fdec->i_dts = h->fenc->i_reordered_pts;
if( h->fenc->i_type == X264_TYPE_IDR )
h->i_last_idr_pts = h->fdec->i_pts;
/* ------------------- Init ----------------------------- */
/* build ref list 0/1 */
reference_build_list( h, h->fdec->i_poc );
/* ---------------------- Write the bitstream -------------------------- */
/* Init bitstream context */
if( h->param.b_sliced_threads )
{
for( int i = 0; i < h->param.i_threads; i++ )
{
bs_init( &h->thread[i]->out.bs, h->thread[i]->out.p_bitstream, h->thread[i]->out.i_bitstream );
h->thread[i]->out.i_nal = 0;
}
}
else
{
bs_init( &h->out.bs, h->out.p_bitstream, h->out.i_bitstream );
h->out.i_nal = 0;
}
if( h->param.b_aud )
{
int pic_type;
if( h->sh.i_type == SLICE_TYPE_I )
pic_type = 0;
else if( h->sh.i_type == SLICE_TYPE_P )
pic_type = 1;
else if( h->sh.i_type == SLICE_TYPE_B )
pic_type = 2;
else
pic_type = 7;
nal_start( h, NAL_AUD, NAL_PRIORITY_DISPOSABLE );
bs_write( &h->out.bs, 3, pic_type );
bs_rbsp_trailing( &h->out.bs );
bs_flush( &h->out.bs );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + NALU_OVERHEAD;
}
h->i_nal_type = i_nal_type;
h->i_nal_ref_idc = i_nal_ref_idc;
if( h->param.b_intra_refresh )
{
if( IS_X264_TYPE_I( h->fenc->i_type ) )
{
h->fdec->i_frames_since_pir = 0;
h->b_queued_intra_refresh = 0;
/* PIR is currently only supported with ref == 1, so any intra frame effectively refreshes
* the whole frame and counts as an intra refresh. */
h->fdec->f_pir_position = h->mb.i_mb_width;
}
else if( h->fenc->i_type == X264_TYPE_P )
{
int pocdiff = (h->fdec->i_poc - h->fref[0][0]->i_poc)/2;
float increment = X264_MAX( ((float)h->mb.i_mb_width-1) / h->param.i_keyint_max, 1 );
h->fdec->f_pir_position = h->fref[0][0]->f_pir_position;
h->fdec->i_frames_since_pir = h->fref[0][0]->i_frames_since_pir + pocdiff;
if( h->fdec->i_frames_since_pir >= h->param.i_keyint_max ||
(h->b_queued_intra_refresh && h->fdec->f_pir_position + 0.5 >= h->mb.i_mb_width) )
{
h->fdec->f_pir_position = 0;
h->fdec->i_frames_since_pir = 0;
h->b_queued_intra_refresh = 0;
h->fenc->b_keyframe = 1;
}
h->fdec->i_pir_start_col = h->fdec->f_pir_position+0.5;
h->fdec->f_pir_position += increment * pocdiff;
h->fdec->i_pir_end_col = h->fdec->f_pir_position+0.5;
/* If our intra refresh has reached the right side of the frame, we're done. */
if( h->fdec->i_pir_end_col >= h->mb.i_mb_width - 1 )
{
h->fdec->f_pir_position = h->mb.i_mb_width;
h->fdec->i_pir_end_col = h->mb.i_mb_width - 1;
}
}
}
if( h->fenc->b_keyframe )
{
/* Write SPS and PPS */
if( h->param.b_repeat_headers )
{
/* generate sequence parameters */
nal_start( h, NAL_SPS, NAL_PRIORITY_HIGHEST );
x264_sps_write( &h->out.bs, h->sps );
if( nal_end( h ) )
return -1;
/* Pad AUD/SPS to 256 bytes like Panasonic */
if( h->param.i_avcintra_class )
h->out.nal[h->out.i_nal-1].i_padding = 256 - bs_pos( &h->out.bs ) / 8 - 2*NALU_OVERHEAD;
overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + NALU_OVERHEAD;
/* generate picture parameters */
nal_start( h, NAL_PPS, NAL_PRIORITY_HIGHEST );
x264_pps_write( &h->out.bs, h->sps, h->pps );
if( nal_end( h ) )
return -1;
if( h->param.i_avcintra_class )
{
int total_len = 256;
/* Sony XAVC uses an oversized PPS instead of SEI padding */
if( h->param.i_avcintra_flavor == X264_AVCINTRA_FLAVOR_SONY )
total_len += h->param.i_height >= 1080 ? 18*512 : 10*512;
h->out.nal[h->out.i_nal-1].i_padding = total_len - h->out.nal[h->out.i_nal-1].i_payload - NALU_OVERHEAD;
}
overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + NALU_OVERHEAD;
}
/* when frame threading is used, buffering period sei is written in encoder_frame_end */
if( h->i_thread_frames == 1 && h->sps->vui.b_nal_hrd_parameters_present )
{
x264_hrd_fullness( h );
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_buffering_period_write( h, &h->out.bs );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
}
/* write extra sei */
for( int i = 0; i < h->fenc->extra_sei.num_payloads; i++ )
{
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_write( &h->out.bs, h->fenc->extra_sei.payloads[i].payload, h->fenc->extra_sei.payloads[i].payload_size,
h->fenc->extra_sei.payloads[i].payload_type );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
if( h->fenc->extra_sei.sei_free )
{
h->fenc->extra_sei.sei_free( h->fenc->extra_sei.payloads[i].payload );
h->fenc->extra_sei.payloads[i].payload = NULL;
}
}
if( h->fenc->extra_sei.sei_free )
{
h->fenc->extra_sei.sei_free( h->fenc->extra_sei.payloads );
h->fenc->extra_sei.payloads = NULL;
h->fenc->extra_sei.sei_free = NULL;
}
if( h->fenc->b_keyframe )
{
/* Avid's decoder strictly wants two SEIs for AVC-Intra so we can't insert the x264 SEI */
if( h->param.b_repeat_headers && h->fenc->i_frame == 0 && !h->param.i_avcintra_class )
{
/* identify ourself */
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
if( x264_sei_version_write( h, &h->out.bs ) )
return -1;
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
if( h->fenc->i_type != X264_TYPE_IDR )
{
int time_to_recovery = h->param.b_open_gop ? 0 : X264_MIN( h->mb.i_mb_width - 1, h->param.i_keyint_max ) + h->param.i_bframe - 1;
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_recovery_point_write( h, &h->out.bs, time_to_recovery );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
if( h->param.mastering_display.b_mastering_display )
{
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_mastering_display_write( h, &h->out.bs );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
if( h->param.content_light_level.b_cll )
{
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_content_light_level_write( h, &h->out.bs );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
if( h->param.i_alternative_transfer != 2 )
{
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_alternative_transfer_write( h, &h->out.bs );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
}
if( h->param.i_frame_packing >= 0 && (h->fenc->b_keyframe || h->param.i_frame_packing == 5) )
{
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_frame_packing_write( h, &h->out.bs );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
/* generate sei pic timing */
if( h->sps->vui.b_pic_struct_present || h->sps->vui.b_nal_hrd_parameters_present )
{
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_pic_timing_write( h, &h->out.bs );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
/* As required by Blu-ray. */
if( !IS_X264_TYPE_B( h->fenc->i_type ) && h->b_sh_backup )
{
h->b_sh_backup = 0;
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_dec_ref_pic_marking_write( h, &h->out.bs );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
}
if( h->fenc->b_keyframe && h->param.b_intra_refresh )
h->i_cpb_delay_pir_offset_next = h->fenc->i_cpb_delay;
/* Filler space: 10 or 18 SEIs' worth of space, depending on resolution */
if( h->param.i_avcintra_class && h->param.i_avcintra_flavor != X264_AVCINTRA_FLAVOR_SONY )
{
/* Write an empty filler NAL to mimic the AUD in the P2 format*/
nal_start( h, NAL_FILLER, NAL_PRIORITY_DISPOSABLE );
x264_filler_write( h, &h->out.bs, 0 );
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + NALU_OVERHEAD;
/* All lengths are magic lengths that decoders expect to see */
/* "UMID" SEI */
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
if( x264_sei_avcintra_umid_write( h, &h->out.bs ) < 0 )
return -1;
if( nal_end( h ) )
return -1;
overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD;
int unpadded_len;
int total_len;
if( h->param.i_height == 1080 )
{
unpadded_len = 5780;
total_len = 17*512;
}
else
{
unpadded_len = 2900;
total_len = 9*512;
}
/* "VANC" SEI */
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
if( x264_sei_avcintra_vanc_write( h, &h->out.bs, unpadded_len ) < 0 )
return -1;
if( nal_end( h ) )
return -1;
h->out.nal[h->out.i_nal-1].i_padding = total_len - h->out.nal[h->out.i_nal-1].i_payload - SEI_OVERHEAD;
overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + SEI_OVERHEAD;
}
/* Init the rate control */
/* FIXME: Include slice header bit cost. */
x264_ratecontrol_start( h, h->fenc->i_qpplus1, overhead*8 );
i_global_qp = x264_ratecontrol_qp( h );
pic_out->i_qpplus1 =
h->fdec->i_qpplus1 = i_global_qp + 1;
if( h->param.rc.b_stat_read && h->sh.i_type != SLICE_TYPE_I )
{
x264_reference_build_list_optimal( h );
reference_check_reorder( h );
}
if( h->i_ref[0] )
h->fdec->i_poc_l0ref0 = h->fref[0][0]->i_poc;
/* ------------------------ Create slice header ----------------------- */
slice_init( h, i_nal_type, i_global_qp );
/*------------------------- Weights -------------------------------------*/
if( h->sh.i_type == SLICE_TYPE_B )
x264_macroblock_bipred_init( h );
weighted_pred_init( h );
if( i_nal_ref_idc != NAL_PRIORITY_DISPOSABLE )
h->i_frame_num++;
/* Write frame */
h->i_threadslice_start = 0;
h->i_threadslice_end = h->mb.i_mb_height;
if( h->i_thread_frames > 1 )
{
x264_threadpool_run( h->threadpool, (void*)slices_write, h );
h->b_thread_active = 1;
}
else if( h->param.b_sliced_threads )
{
if( threaded_slices_write( h ) )
return -1;
}
else
if( (intptr_t)slices_write( h ) )
return -1;
return encoder_frame_end( thread_oldest, thread_current, pp_nal, pi_nal, pic_out );
}
static int encoder_frame_end( x264_t *h, x264_t *thread_current,
x264_nal_t **pp_nal, int *pi_nal,
x264_picture_t *pic_out )
{
char psz_message[80];
if( !h->param.b_sliced_threads && h->b_thread_active )
{
h->b_thread_active = 0;
if( (intptr_t)x264_threadpool_wait( h->threadpool, h ) )
return -1;
}
if( !h->out.i_nal )
{
pic_out->i_type = X264_TYPE_AUTO;
return 0;
}
x264_emms();
/* generate buffering period sei and insert it into place */
if( h->i_thread_frames > 1 && h->fenc->b_keyframe && h->sps->vui.b_nal_hrd_parameters_present )
{
x264_hrd_fullness( h );
nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE );
x264_sei_buffering_period_write( h, &h->out.bs );
if( nal_end( h ) )
return -1;
/* buffering period sei must follow AUD, SPS and PPS and precede all other SEIs */
int idx = 0;
while( h->out.nal[idx].i_type == NAL_AUD ||
h->out.nal[idx].i_type == NAL_SPS ||
h->out.nal[idx].i_type == NAL_PPS )
idx++;
x264_nal_t nal_tmp = h->out.nal[h->out.i_nal-1];
memmove( &h->out.nal[idx+1], &h->out.nal[idx], (h->out.i_nal-idx-1)*sizeof(x264_nal_t) );
h->out.nal[idx] = nal_tmp;
}
int frame_size = encoder_encapsulate_nals( h, 0 );
if( frame_size < 0 )
return -1;
/* Set output picture properties */
pic_out->i_type = h->fenc->i_type;
pic_out->b_keyframe = h->fenc->b_keyframe;
pic_out->i_pic_struct = h->fenc->i_pic_struct;
pic_out->i_pts = h->fdec->i_pts;
pic_out->i_dts = h->fdec->i_dts;
if( pic_out->i_pts < pic_out->i_dts )
x264_log( h, X264_LOG_WARNING, "invalid DTS: PTS is less than DTS\n" );
pic_out->opaque = h->fenc->opaque;
pic_out->img.i_csp = h->fdec->i_csp;
#if HIGH_BIT_DEPTH
pic_out->img.i_csp |= X264_CSP_HIGH_DEPTH;
#endif
pic_out->img.i_plane = h->fdec->i_plane;
for( int i = 0; i < pic_out->img.i_plane; i++ )
{
pic_out->img.i_stride[i] = h->fdec->i_stride[i] * SIZEOF_PIXEL;
pic_out->img.plane[i] = (uint8_t*)h->fdec->plane[i];
}
x264_frame_push_unused( thread_current, h->fenc );
/* ---------------------- Update encoder state ------------------------- */
/* update rc */
int filler = 0;
if( x264_ratecontrol_end( h, frame_size * 8, &filler ) < 0 )
return -1;
pic_out->hrd_timing = h->fenc->hrd_timing;
pic_out->prop.f_crf_avg = h->fdec->f_crf_avg;
/* Filler in AVC-Intra mode is written as zero bytes to the last slice
* We don't know the size of the last slice until encapsulation so we add filler to the encapsulated NAL */
if( h->param.i_avcintra_class )
{
if( check_encapsulated_buffer( h, h->thread[0], h->out.i_nal, frame_size, (int64_t)frame_size + filler ) < 0 )
return -1;
x264_nal_t *nal = &h->out.nal[h->out.i_nal-1];
memset( nal->p_payload + nal->i_payload, 0, filler );
nal->i_payload += filler;
nal->i_padding = filler;
frame_size += filler;
/* Fix up the size header for mp4/etc */
if( !h->param.b_annexb )
{
/* Size doesn't include the size of the header we're writing now. */
uint8_t *nal_data = nal->p_payload;
int chunk_size = nal->i_payload - 4;
nal_data[0] = chunk_size >> 24;
nal_data[1] = chunk_size >> 16;
nal_data[2] = chunk_size >> 8;
nal_data[3] = chunk_size >> 0;
}
}
else
{
while( filler > 0 )
{
int f, overhead = FILLER_OVERHEAD - h->param.b_annexb;
if( h->param.i_slice_max_size && filler > h->param.i_slice_max_size )
{
int next_size = filler - h->param.i_slice_max_size;
int overflow = X264_MAX( overhead - next_size, 0 );
f = h->param.i_slice_max_size - overhead - overflow;
}
else
f = X264_MAX( 0, filler - overhead );
if( bitstream_check_buffer_filler( h, f ) )
return -1;
nal_start( h, NAL_FILLER, NAL_PRIORITY_DISPOSABLE );
x264_filler_write( h, &h->out.bs, f );
if( nal_end( h ) )
return -1;
int total_size = encoder_encapsulate_nals( h, h->out.i_nal-1 );
if( total_size < 0 )
return -1;
frame_size += total_size;
filler -= total_size;
}
}
/* End bitstream, set output */
*pi_nal = h->out.i_nal;
*pp_nal = h->out.nal;
h->out.i_nal = 0;
x264_noise_reduction_update( h );
/* ---------------------- Compute/Print statistics --------------------- */
thread_sync_stat( h, h->thread[0] );
/* Slice stat */
h->stat.i_frame_count[h->sh.i_type]++;
h->stat.i_frame_size[h->sh.i_type] += frame_size;
h->stat.f_frame_qp[h->sh.i_type] += h->fdec->f_qp_avg_aq;
for( int i = 0; i < X264_MBTYPE_MAX; i++ )
h->stat.i_mb_count[h->sh.i_type][i] += h->stat.frame.i_mb_count[i];
for( int i = 0; i < 2; i++ )
h->stat.i_mb_count_8x8dct[i] += h->stat.frame.i_mb_count_8x8dct[i];
for( int i = 0; i < 6; i++ )
h->stat.i_mb_cbp[i] += h->stat.frame.i_mb_cbp[i];
for( int i = 0; i < 4; i++ )
for( int j = 0; j < 13; j++ )
h->stat.i_mb_pred_mode[i][j] += h->stat.frame.i_mb_pred_mode[i][j];
if( h->sh.i_type != SLICE_TYPE_I )
{
for( int i = 0; i < X264_PARTTYPE_MAX; i++ )
h->stat.i_mb_partition[h->sh.i_type][i] += h->stat.frame.i_mb_partition[i];
for( int i_list = 0; i_list < 2; i_list++ )
for( int i = 0; i < X264_REF_MAX*2; i++ )
h->stat.i_mb_count_ref[h->sh.i_type][i_list][i] += h->stat.frame.i_mb_count_ref[i_list][i];
}
for( int i = 0; i < 3; i++ )
h->stat.i_mb_field[i] += h->stat.frame.i_mb_field[i];
if( h->sh.i_type == SLICE_TYPE_P && h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE )
{
h->stat.i_wpred[0] += !!h->sh.weight[0][0].weightfn;
h->stat.i_wpred[1] += !!h->sh.weight[0][1].weightfn || !!h->sh.weight[0][2].weightfn;
}
if( h->sh.i_type == SLICE_TYPE_B )
{
h->stat.i_direct_frames[ h->sh.b_direct_spatial_mv_pred ] ++;
if( h->mb.b_direct_auto_write )
{
//FIXME somewhat arbitrary time constants
if( h->stat.i_direct_score[0] + h->stat.i_direct_score[1] > h->mb.i_mb_count )
for( int i = 0; i < 2; i++ )
h->stat.i_direct_score[i] = h->stat.i_direct_score[i] * 9/10;
for( int i = 0; i < 2; i++ )
h->stat.i_direct_score[i] += h->stat.frame.i_direct_score[i];
}
}
else
h->stat.i_consecutive_bframes[h->fenc->i_bframes]++;
psz_message[0] = '\0';
double dur = h->fenc->f_duration;
h->stat.f_frame_duration[h->sh.i_type] += dur;
if( h->param.analyse.b_psnr )
{
int64_t ssd[3] =
{
h->stat.frame.i_ssd[0],
h->stat.frame.i_ssd[1],
h->stat.frame.i_ssd[2],
};
int luma_size = h->param.i_width * h->param.i_height;
int chroma_size = CHROMA_SIZE( luma_size );
pic_out->prop.f_psnr[0] = calc_psnr( ssd[0], luma_size );
pic_out->prop.f_psnr[1] = calc_psnr( ssd[1], chroma_size );
pic_out->prop.f_psnr[2] = calc_psnr( ssd[2], chroma_size );
pic_out->prop.f_psnr_avg = calc_psnr( ssd[0] + ssd[1] + ssd[2], luma_size + chroma_size*2 );
h->stat.f_ssd_global[h->sh.i_type] += dur * (ssd[0] + ssd[1] + ssd[2]);
h->stat.f_psnr_average[h->sh.i_type] += dur * pic_out->prop.f_psnr_avg;
h->stat.f_psnr_mean_y[h->sh.i_type] += dur * pic_out->prop.f_psnr[0];
h->stat.f_psnr_mean_u[h->sh.i_type] += dur * pic_out->prop.f_psnr[1];
h->stat.f_psnr_mean_v[h->sh.i_type] += dur * pic_out->prop.f_psnr[2];
snprintf( psz_message, 80, " PSNR Y:%5.2f U:%5.2f V:%5.2f", pic_out->prop.f_psnr[0],
pic_out->prop.f_psnr[1],
pic_out->prop.f_psnr[2] );
}
if( h->param.analyse.b_ssim )
{
pic_out->prop.f_ssim = h->stat.frame.f_ssim / h->stat.frame.i_ssim_cnt;
h->stat.f_ssim_mean_y[h->sh.i_type] += pic_out->prop.f_ssim * dur;
int msg_len = strlen(psz_message);
snprintf( psz_message + msg_len, 80 - msg_len, " SSIM Y:%.5f", pic_out->prop.f_ssim );
}
psz_message[79] = '\0';
x264_log( h, X264_LOG_DEBUG,
"frame=%4d QP=%.2f NAL=%d Slice:%c Poc:%-3d I:%-4d P:%-4d SKIP:%-4d size=%d bytes%s\n",
h->i_frame,
h->fdec->f_qp_avg_aq,
h->i_nal_ref_idc,
h->sh.i_type == SLICE_TYPE_I ? 'I' : (h->sh.i_type == SLICE_TYPE_P ? 'P' : 'B' ),
h->fdec->i_poc,
h->stat.frame.i_mb_count_i,
h->stat.frame.i_mb_count_p,
h->stat.frame.i_mb_count_skip,
frame_size,
psz_message );
// keep stats all in one place
thread_sync_stat( h->thread[0], h );
// for the use of the next frame
thread_sync_stat( thread_current, h );
#ifdef DEBUG_MB_TYPE
{
static const char mb_chars[] = { 'i', 'i', 'I', 'C', 'P', '8', 'S',
'D', '<', 'X', 'B', 'X', '>', 'B', 'B', 'B', 'B', '8', 'S' };
for( int mb_xy = 0; mb_xy < h->mb.i_mb_width * h->mb.i_mb_height; mb_xy++ )
{
if( h->mb.type[mb_xy] < X264_MBTYPE_MAX && h->mb.type[mb_xy] >= 0 )
fprintf( stderr, "%c ", mb_chars[ h->mb.type[mb_xy] ] );
else
fprintf( stderr, "? " );
if( (mb_xy+1) % h->mb.i_mb_width == 0 )
fprintf( stderr, "\n" );
}
}
#endif
/* Remove duplicates, must be done near the end as breaks h->fref0 array
* by freeing some of its pointers. */
for( int i = 0; i < h->i_ref[0]; i++ )
if( h->fref[0][i] && h->fref[0][i]->b_duplicate )
{
x264_frame_push_blank_unused( h, h->fref[0][i] );
h->fref[0][i] = 0;
}
if( h->param.psz_dump_yuv )
frame_dump( h );
x264_emms();
return frame_size;
}
static void print_intra( int64_t *i_mb_count, double i_count, int b_print_pcm, char *intra )
{
intra += sprintf( intra, "I16..4%s: %4.1f%% %4.1f%% %4.1f%%",
b_print_pcm ? "..PCM" : "",
i_mb_count[I_16x16]/ i_count,
i_mb_count[I_8x8] / i_count,
i_mb_count[I_4x4] / i_count );
if( b_print_pcm )
sprintf( intra, " %4.1f%%", i_mb_count[I_PCM] / i_count );
}
/****************************************************************************
* x264_encoder_close:
****************************************************************************/
void x264_encoder_close ( x264_t *h )
{
int64_t i_yuv_size = FRAME_SIZE( h->param.i_width * h->param.i_height );
int64_t i_mb_count_size[2][7] = {{0}};
char buf[200];
int b_print_pcm = h->stat.i_mb_count[SLICE_TYPE_I][I_PCM]
|| h->stat.i_mb_count[SLICE_TYPE_P][I_PCM]
|| h->stat.i_mb_count[SLICE_TYPE_B][I_PCM];
x264_lookahead_delete( h );
#if HAVE_OPENCL
x264_opencl_lookahead_delete( h );
x264_opencl_function_t *ocl = h->opencl.ocl;
#endif
if( h->param.b_sliced_threads )
threadpool_wait_all( h );
if( h->param.i_threads > 1 )
x264_threadpool_delete( h->threadpool );
if( h->param.i_lookahead_threads > 1 )
x264_threadpool_delete( h->lookaheadpool );
if( h->i_thread_frames > 1 )
{
for( int i = 0; i < h->i_thread_frames; i++ )
if( h->thread[i]->b_thread_active )
{
assert( h->thread[i]->fenc->i_reference_count == 1 );
x264_frame_delete( h->thread[i]->fenc );
}
x264_t *thread_prev = h->thread[h->i_thread_phase];
x264_thread_sync_ratecontrol( h, thread_prev, h );
x264_thread_sync_ratecontrol( thread_prev, thread_prev, h );
h->i_frame = thread_prev->i_frame + 1 - h->i_thread_frames;
}
h->i_frame++;
/* Slices used and PSNR */
for( int i = 0; i < 3; i++ )
{
static const uint8_t slice_order[] = { SLICE_TYPE_I, SLICE_TYPE_P, SLICE_TYPE_B };
int i_slice = slice_order[i];
if( h->stat.i_frame_count[i_slice] > 0 )
{
int i_count = h->stat.i_frame_count[i_slice];
double dur = h->stat.f_frame_duration[i_slice];
if( h->param.analyse.b_psnr )
{
x264_log( h, X264_LOG_INFO,
"frame %c:%-5d Avg QP:%5.2f size:%6.0f PSNR Mean Y:%5.2f U:%5.2f V:%5.2f Avg:%5.2f Global:%5.2f\n",
slice_type_to_char[i_slice],
i_count,
h->stat.f_frame_qp[i_slice] / i_count,
(double)h->stat.i_frame_size[i_slice] / i_count,
h->stat.f_psnr_mean_y[i_slice] / dur, h->stat.f_psnr_mean_u[i_slice] / dur, h->stat.f_psnr_mean_v[i_slice] / dur,
h->stat.f_psnr_average[i_slice] / dur,
calc_psnr( h->stat.f_ssd_global[i_slice], dur * i_yuv_size ) );
}
else
{
x264_log( h, X264_LOG_INFO,
"frame %c:%-5d Avg QP:%5.2f size:%6.0f\n",
slice_type_to_char[i_slice],
i_count,
h->stat.f_frame_qp[i_slice] / i_count,
(double)h->stat.i_frame_size[i_slice] / i_count );
}
}
}
if( h->param.i_bframe && h->stat.i_frame_count[SLICE_TYPE_B] )
{
char *p = buf;
int den = 0;
// weight by number of frames (including the I/P-frames) that are in a sequence of N B-frames
for( int i = 0; i <= h->param.i_bframe; i++ )
den += (i+1) * h->stat.i_consecutive_bframes[i];
for( int i = 0; i <= h->param.i_bframe; i++ )
p += sprintf( p, " %4.1f%%", 100. * (i+1) * h->stat.i_consecutive_bframes[i] / den );
x264_log( h, X264_LOG_INFO, "consecutive B-frames:%s\n", buf );
}
for( int i_type = 0; i_type < 2; i_type++ )
for( int i = 0; i < X264_PARTTYPE_MAX; i++ )
{
if( i == D_DIRECT_8x8 ) continue; /* direct is counted as its own type */
i_mb_count_size[i_type][x264_mb_partition_pixel_table[i]] += h->stat.i_mb_partition[i_type][i];
}
/* MB types used */
if( h->stat.i_frame_count[SLICE_TYPE_I] > 0 )
{
int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_I];
double i_count = (double)h->stat.i_frame_count[SLICE_TYPE_I] * h->mb.i_mb_count / 100.0;
print_intra( i_mb_count, i_count, b_print_pcm, buf );
x264_log( h, X264_LOG_INFO, "mb I %s\n", buf );
}
if( h->stat.i_frame_count[SLICE_TYPE_P] > 0 )
{
int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_P];
double i_count = (double)h->stat.i_frame_count[SLICE_TYPE_P] * h->mb.i_mb_count / 100.0;
int64_t *i_mb_size = i_mb_count_size[SLICE_TYPE_P];
print_intra( i_mb_count, i_count, b_print_pcm, buf );
x264_log( h, X264_LOG_INFO,
"mb P %s P16..4: %4.1f%% %4.1f%% %4.1f%% %4.1f%% %4.1f%% skip:%4.1f%%\n",
buf,
i_mb_size[PIXEL_16x16] / (i_count*4),
(i_mb_size[PIXEL_16x8] + i_mb_size[PIXEL_8x16]) / (i_count*4),
i_mb_size[PIXEL_8x8] / (i_count*4),
(i_mb_size[PIXEL_8x4] + i_mb_size[PIXEL_4x8]) / (i_count*4),
i_mb_size[PIXEL_4x4] / (i_count*4),
i_mb_count[P_SKIP] / i_count );
}
if( h->stat.i_frame_count[SLICE_TYPE_B] > 0 )
{
int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_B];
double i_count = (double)h->stat.i_frame_count[SLICE_TYPE_B] * h->mb.i_mb_count / 100.0;
double i_mb_list_count;
int64_t *i_mb_size = i_mb_count_size[SLICE_TYPE_B];
int64_t list_count[3] = {0}; /* 0 == L0, 1 == L1, 2 == BI */
print_intra( i_mb_count, i_count, b_print_pcm, buf );
for( int i = 0; i < X264_PARTTYPE_MAX; i++ )
for( int j = 0; j < 2; j++ )
{
int l0 = x264_mb_type_list_table[i][0][j];
int l1 = x264_mb_type_list_table[i][1][j];
if( l0 || l1 )
list_count[l1+l0*l1] += h->stat.i_mb_count[SLICE_TYPE_B][i] * 2;
}
list_count[0] += h->stat.i_mb_partition[SLICE_TYPE_B][D_L0_8x8];
list_count[1] += h->stat.i_mb_partition[SLICE_TYPE_B][D_L1_8x8];
list_count[2] += h->stat.i_mb_partition[SLICE_TYPE_B][D_BI_8x8];
i_mb_count[B_DIRECT] += (h->stat.i_mb_partition[SLICE_TYPE_B][D_DIRECT_8x8]+2)/4;
i_mb_list_count = (list_count[0] + list_count[1] + list_count[2]) / 100.0;
sprintf( buf + strlen(buf), " B16..8: %4.1f%% %4.1f%% %4.1f%% direct:%4.1f%% skip:%4.1f%%",
i_mb_size[PIXEL_16x16] / (i_count*4),
(i_mb_size[PIXEL_16x8] + i_mb_size[PIXEL_8x16]) / (i_count*4),
i_mb_size[PIXEL_8x8] / (i_count*4),
i_mb_count[B_DIRECT] / i_count,
i_mb_count[B_SKIP] / i_count );
if( i_mb_list_count != 0 )
sprintf( buf + strlen(buf), " L0:%4.1f%% L1:%4.1f%% BI:%4.1f%%",
list_count[0] / i_mb_list_count,
list_count[1] / i_mb_list_count,
list_count[2] / i_mb_list_count );
x264_log( h, X264_LOG_INFO, "mb B %s\n", buf );
}
x264_ratecontrol_summary( h );
if( h->stat.i_frame_count[SLICE_TYPE_I] + h->stat.i_frame_count[SLICE_TYPE_P] + h->stat.i_frame_count[SLICE_TYPE_B] > 0 )
{
#define SUM3(p) (p[SLICE_TYPE_I] + p[SLICE_TYPE_P] + p[SLICE_TYPE_B])
#define SUM3b(p,o) (p[SLICE_TYPE_I][o] + p[SLICE_TYPE_P][o] + p[SLICE_TYPE_B][o])
int64_t i_i8x8 = SUM3b( h->stat.i_mb_count, I_8x8 );
int64_t i_intra = i_i8x8 + SUM3b( h->stat.i_mb_count, I_4x4 )
+ SUM3b( h->stat.i_mb_count, I_16x16 );
int64_t i_all_intra = i_intra + SUM3b( h->stat.i_mb_count, I_PCM );
int64_t i_skip = SUM3b( h->stat.i_mb_count, P_SKIP )
+ SUM3b( h->stat.i_mb_count, B_SKIP );
const int i_count = h->stat.i_frame_count[SLICE_TYPE_I] +
h->stat.i_frame_count[SLICE_TYPE_P] +
h->stat.i_frame_count[SLICE_TYPE_B];
int64_t i_mb_count = (int64_t)i_count * h->mb.i_mb_count;
int64_t i_inter = i_mb_count - i_skip - i_all_intra;
const double duration = h->stat.f_frame_duration[SLICE_TYPE_I] +
h->stat.f_frame_duration[SLICE_TYPE_P] +
h->stat.f_frame_duration[SLICE_TYPE_B];
float f_bitrate = SUM3(h->stat.i_frame_size) / duration / 125;
if( PARAM_INTERLACED )
{
char *fieldstats = buf;
fieldstats[0] = 0;
if( i_inter )
fieldstats += sprintf( fieldstats, " inter:%.1f%%", h->stat.i_mb_field[1] * 100.0 / i_inter );
if( i_skip )
fieldstats += sprintf( fieldstats, " skip:%.1f%%", h->stat.i_mb_field[2] * 100.0 / i_skip );
x264_log( h, X264_LOG_INFO, "field mbs: intra: %.1f%%%s\n",
h->stat.i_mb_field[0] * 100.0 / i_all_intra, buf );
}
if( h->pps->b_transform_8x8_mode )
{
buf[0] = 0;
if( h->stat.i_mb_count_8x8dct[0] )
sprintf( buf, " inter:%.1f%%", 100. * h->stat.i_mb_count_8x8dct[1] / h->stat.i_mb_count_8x8dct[0] );
x264_log( h, X264_LOG_INFO, "8x8 transform intra:%.1f%%%s\n", 100. * i_i8x8 / X264_MAX( i_intra, 1 ), buf );
}
if( (h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO ||
(h->stat.i_direct_frames[0] && h->stat.i_direct_frames[1]))
&& h->stat.i_frame_count[SLICE_TYPE_B] )
{
x264_log( h, X264_LOG_INFO, "direct mvs spatial:%.1f%% temporal:%.1f%%\n",
h->stat.i_direct_frames[1] * 100. / h->stat.i_frame_count[SLICE_TYPE_B],
h->stat.i_direct_frames[0] * 100. / h->stat.i_frame_count[SLICE_TYPE_B] );
}
buf[0] = 0;
if( CHROMA_FORMAT )
{
int csize = CHROMA444 ? 4 : 1;
if( i_mb_count != i_all_intra )
sprintf( buf, " inter: %.1f%% %.1f%% %.1f%%",
h->stat.i_mb_cbp[1] * 100.0 / ((i_mb_count - i_all_intra)*4),
h->stat.i_mb_cbp[3] * 100.0 / ((i_mb_count - i_all_intra)*csize),
h->stat.i_mb_cbp[5] * 100.0 / ((i_mb_count - i_all_intra)*csize) );
x264_log( h, X264_LOG_INFO, "coded y,%s,%s intra: %.1f%% %.1f%% %.1f%%%s\n",
CHROMA444?"u":"uvDC", CHROMA444?"v":"uvAC",
h->stat.i_mb_cbp[0] * 100.0 / (i_all_intra*4),
h->stat.i_mb_cbp[2] * 100.0 / (i_all_intra*csize),
h->stat.i_mb_cbp[4] * 100.0 / (i_all_intra*csize), buf );
}
else
{
if( i_mb_count != i_all_intra )
sprintf( buf, " inter: %.1f%%", h->stat.i_mb_cbp[1] * 100.0 / ((i_mb_count - i_all_intra)*4) );
x264_log( h, X264_LOG_INFO, "coded y intra: %.1f%%%s\n",
h->stat.i_mb_cbp[0] * 100.0 / (i_all_intra*4), buf );
}
int64_t fixed_pred_modes[4][9] = {{0}};
int64_t sum_pred_modes[4] = {0};
for( int i = 0; i <= I_PRED_16x16_DC_128; i++ )
{
fixed_pred_modes[0][x264_mb_pred_mode16x16_fix[i]] += h->stat.i_mb_pred_mode[0][i];
sum_pred_modes[0] += h->stat.i_mb_pred_mode[0][i];
}
if( sum_pred_modes[0] )
x264_log( h, X264_LOG_INFO, "i16 v,h,dc,p: %2.0f%% %2.0f%% %2.0f%% %2.0f%%\n",
fixed_pred_modes[0][0] * 100.0 / sum_pred_modes[0],
fixed_pred_modes[0][1] * 100.0 / sum_pred_modes[0],
fixed_pred_modes[0][2] * 100.0 / sum_pred_modes[0],
fixed_pred_modes[0][3] * 100.0 / sum_pred_modes[0] );
for( int i = 1; i <= 2; i++ )
{
for( int j = 0; j <= I_PRED_8x8_DC_128; j++ )
{
fixed_pred_modes[i][x264_mb_pred_mode4x4_fix(j)] += h->stat.i_mb_pred_mode[i][j];
sum_pred_modes[i] += h->stat.i_mb_pred_mode[i][j];
}
if( sum_pred_modes[i] )
x264_log( h, X264_LOG_INFO, "i%d v,h,dc,ddl,ddr,vr,hd,vl,hu: %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%%\n", (3-i)*4,
fixed_pred_modes[i][0] * 100.0 / sum_pred_modes[i],
fixed_pred_modes[i][1] * 100.0 / sum_pred_modes[i],
fixed_pred_modes[i][2] * 100.0 / sum_pred_modes[i],
fixed_pred_modes[i][3] * 100.0 / sum_pred_modes[i],
fixed_pred_modes[i][4] * 100.0 / sum_pred_modes[i],
fixed_pred_modes[i][5] * 100.0 / sum_pred_modes[i],
fixed_pred_modes[i][6] * 100.0 / sum_pred_modes[i],
fixed_pred_modes[i][7] * 100.0 / sum_pred_modes[i],
fixed_pred_modes[i][8] * 100.0 / sum_pred_modes[i] );
}
for( int i = 0; i <= I_PRED_CHROMA_DC_128; i++ )
{
fixed_pred_modes[3][x264_mb_chroma_pred_mode_fix[i]] += h->stat.i_mb_pred_mode[3][i];
sum_pred_modes[3] += h->stat.i_mb_pred_mode[3][i];
}
if( sum_pred_modes[3] && !CHROMA444 )
x264_log( h, X264_LOG_INFO, "i8c dc,h,v,p: %2.0f%% %2.0f%% %2.0f%% %2.0f%%\n",
fixed_pred_modes[3][0] * 100.0 / sum_pred_modes[3],
fixed_pred_modes[3][1] * 100.0 / sum_pred_modes[3],
fixed_pred_modes[3][2] * 100.0 / sum_pred_modes[3],
fixed_pred_modes[3][3] * 100.0 / sum_pred_modes[3] );
if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->stat.i_frame_count[SLICE_TYPE_P] > 0 )
{
buf[0] = 0;
if( CHROMA_FORMAT )
sprintf( buf, " UV:%.1f%%", h->stat.i_wpred[1] * 100.0 / h->stat.i_frame_count[SLICE_TYPE_P] );
x264_log( h, X264_LOG_INFO, "Weighted P-Frames: Y:%.1f%%%s\n",
h->stat.i_wpred[0] * 100.0 / h->stat.i_frame_count[SLICE_TYPE_P], buf );
}
for( int i_list = 0; i_list < 2; i_list++ )
for( int i_slice = 0; i_slice < 2; i_slice++ )
{
char *p = buf;
int64_t i_den = 0;
int i_max = 0;
for( int i = 0; i < X264_REF_MAX*2; i++ )
if( h->stat.i_mb_count_ref[i_slice][i_list][i] )
{
i_den += h->stat.i_mb_count_ref[i_slice][i_list][i];
i_max = i;
}
if( i_max == 0 )
continue;
for( int i = 0; i <= i_max; i++ )
p += sprintf( p, " %4.1f%%", 100. * h->stat.i_mb_count_ref[i_slice][i_list][i] / i_den );
x264_log( h, X264_LOG_INFO, "ref %c L%d:%s\n", "PB"[i_slice], i_list, buf );
}
if( h->param.analyse.b_ssim )
{
float ssim = SUM3( h->stat.f_ssim_mean_y ) / duration;
x264_log( h, X264_LOG_INFO, "SSIM Mean Y:%.7f (%6.3fdb)\n", ssim, calc_ssim_db( ssim ) );
}
if( h->param.analyse.b_psnr )
{
x264_log( h, X264_LOG_INFO,
"PSNR Mean Y:%6.3f U:%6.3f V:%6.3f Avg:%6.3f Global:%6.3f kb/s:%.2f\n",
SUM3( h->stat.f_psnr_mean_y ) / duration,
SUM3( h->stat.f_psnr_mean_u ) / duration,
SUM3( h->stat.f_psnr_mean_v ) / duration,
SUM3( h->stat.f_psnr_average ) / duration,
calc_psnr( SUM3( h->stat.f_ssd_global ), duration * i_yuv_size ),
f_bitrate );
}
else
x264_log( h, X264_LOG_INFO, "kb/s:%.2f\n", f_bitrate );
}
/* rc */
x264_ratecontrol_delete( h );
/* param */
x264_param_cleanup( &h->param );
x264_cqm_delete( h );
x264_free( h->nal_buffer );
x264_free( h->reconfig_h );
x264_analyse_free_costs( h );
x264_free( h->cost_table );
if( h->i_thread_frames > 1 )
h = h->thread[h->i_thread_phase];
/* frames */
x264_frame_delete_list( h->frames.unused[0] );
x264_frame_delete_list( h->frames.unused[1] );
x264_frame_delete_list( h->frames.current );
x264_frame_delete_list( h->frames.blank_unused );
h = h->thread[0];
for( int i = 0; i < h->i_thread_frames; i++ )
if( h->thread[i]->b_thread_active )
for( int j = 0; j < h->thread[i]->i_ref[0]; j++ )
if( h->thread[i]->fref[0][j] && h->thread[i]->fref[0][j]->b_duplicate )
x264_frame_delete( h->thread[i]->fref[0][j] );
if( h->param.i_lookahead_threads > 1 )
for( int i = 0; i < h->param.i_lookahead_threads; i++ )
x264_free( h->lookahead_thread[i] );
for( int i = h->param.i_threads - 1; i >= 0; i-- )
{
x264_frame_t **frame;
if( !h->param.b_sliced_threads || i == 0 )
{
for( frame = h->thread[i]->frames.reference; *frame; frame++ )
{
assert( (*frame)->i_reference_count > 0 );
(*frame)->i_reference_count--;
if( (*frame)->i_reference_count == 0 )
x264_frame_delete( *frame );
}
frame = &h->thread[i]->fdec;
if( *frame )
{
assert( (*frame)->i_reference_count > 0 );
(*frame)->i_reference_count--;
if( (*frame)->i_reference_count == 0 )
x264_frame_delete( *frame );
}
x264_macroblock_cache_free( h->thread[i] );
}
x264_macroblock_thread_free( h->thread[i], 0 );
x264_free( h->thread[i]->out.p_bitstream );
x264_free( h->thread[i]->out.nal );
x264_pthread_mutex_destroy( &h->thread[i]->mutex );
x264_pthread_cond_destroy( &h->thread[i]->cv );
x264_free( h->thread[i] );
}
#if HAVE_OPENCL
x264_opencl_close_library( ocl );
#endif
}
int x264_encoder_delayed_frames( x264_t *h )
{
int delayed_frames = 0;
if( h->i_thread_frames > 1 )
{
for( int i = 0; i < h->i_thread_frames; i++ )
delayed_frames += h->thread[i]->b_thread_active;
h = h->thread[h->i_thread_phase];
}
for( int i = 0; h->frames.current[i]; i++ )
delayed_frames++;
x264_pthread_mutex_lock( &h->lookahead->ofbuf.mutex );
x264_pthread_mutex_lock( &h->lookahead->ifbuf.mutex );
x264_pthread_mutex_lock( &h->lookahead->next.mutex );
delayed_frames += h->lookahead->ifbuf.i_size + h->lookahead->next.i_size + h->lookahead->ofbuf.i_size;
x264_pthread_mutex_unlock( &h->lookahead->next.mutex );
x264_pthread_mutex_unlock( &h->lookahead->ifbuf.mutex );
x264_pthread_mutex_unlock( &h->lookahead->ofbuf.mutex );
return delayed_frames;
}
int x264_encoder_maximum_delayed_frames( x264_t *h )
{
return h->frames.i_delay;
}