3135 lines
121 KiB
C
3135 lines
121 KiB
C
/*****************************************************************************
|
|
* ratecontrol.c: ratecontrol
|
|
*****************************************************************************
|
|
* Copyright (C) 2005-2025 x264 project
|
|
*
|
|
* Authors: Loren Merritt <lorenm@u.washington.edu>
|
|
* Michael Niedermayer <michaelni@gmx.at>
|
|
* Gabriel Bouvigne <gabriel.bouvigne@joost.com>
|
|
* Fiona Glaser <fiona@x264.com>
|
|
* Måns Rullgård <mru@mru.ath.cx>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
|
|
*
|
|
* This program is also available under a commercial proprietary license.
|
|
* For more information, contact us at licensing@x264.com.
|
|
*****************************************************************************/
|
|
|
|
#undef NDEBUG // always check asserts, the speed effect is far too small to disable them
|
|
|
|
#include "common/common.h"
|
|
#include "ratecontrol.h"
|
|
#include "me.h"
|
|
|
|
typedef struct
|
|
{
|
|
int pict_type;
|
|
int frame_type;
|
|
int kept_as_ref;
|
|
double qscale;
|
|
int mv_bits;
|
|
int tex_bits;
|
|
int misc_bits;
|
|
double expected_bits; /* total expected bits up to the current frame (current one excluded) */
|
|
double expected_vbv;
|
|
double new_qscale;
|
|
float new_qp;
|
|
int i_count;
|
|
int p_count;
|
|
int s_count;
|
|
float blurred_complexity;
|
|
char direct_mode;
|
|
int16_t weight[3][2];
|
|
int16_t i_weight_denom[2];
|
|
int refcount[16];
|
|
int refs;
|
|
int64_t i_duration;
|
|
int64_t i_cpb_duration;
|
|
int out_num;
|
|
} ratecontrol_entry_t;
|
|
|
|
typedef struct
|
|
{
|
|
float coeff_min;
|
|
float coeff;
|
|
float count;
|
|
float decay;
|
|
float offset;
|
|
} predictor_t;
|
|
|
|
struct x264_ratecontrol_t
|
|
{
|
|
/* constants */
|
|
int b_abr;
|
|
int b_2pass;
|
|
int b_vbv;
|
|
int b_vbv_min_rate;
|
|
double fps;
|
|
double bitrate;
|
|
double rate_tolerance;
|
|
double qcompress;
|
|
int nmb; /* number of macroblocks in a frame */
|
|
int qp_constant[3];
|
|
|
|
/* current frame */
|
|
ratecontrol_entry_t *rce;
|
|
float qpm; /* qp for current macroblock: precise float for AQ */
|
|
float qpa_rc; /* average of macroblocks' qp before aq */
|
|
float qpa_rc_prev;
|
|
int qpa_aq; /* average of macroblocks' qp after aq */
|
|
int qpa_aq_prev;
|
|
float qp_novbv; /* QP for the current frame if 1-pass VBV was disabled. */
|
|
|
|
/* VBV stuff */
|
|
double buffer_size;
|
|
int64_t buffer_fill_final;
|
|
int64_t buffer_fill_final_min;
|
|
double buffer_fill; /* planned buffer, if all in-progress frames hit their bit budget */
|
|
double buffer_rate; /* # of bits added to buffer_fill after each frame */
|
|
double vbv_max_rate; /* # of bits added to buffer_fill per second */
|
|
predictor_t *pred; /* predict frame size from satd */
|
|
int single_frame_vbv;
|
|
float rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */
|
|
|
|
/* ABR stuff */
|
|
int last_satd;
|
|
double last_rceq;
|
|
double cplxr_sum; /* sum of bits*qscale/rceq */
|
|
double expected_bits_sum; /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */
|
|
int64_t filler_bits_sum; /* sum in bits of finished frames' filler data */
|
|
double wanted_bits_window; /* target bitrate * window */
|
|
double cbr_decay;
|
|
double short_term_cplxsum;
|
|
double short_term_cplxcount;
|
|
double rate_factor_constant;
|
|
double ip_offset;
|
|
double pb_offset;
|
|
|
|
/* 2pass stuff */
|
|
FILE *p_stat_file_out;
|
|
char *psz_stat_file_tmpname;
|
|
FILE *p_mbtree_stat_file_out;
|
|
char *psz_mbtree_stat_file_tmpname;
|
|
char *psz_mbtree_stat_file_name;
|
|
FILE *p_mbtree_stat_file_in;
|
|
|
|
int num_entries; /* number of ratecontrol_entry_ts */
|
|
ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */
|
|
ratecontrol_entry_t **entry_out;
|
|
double last_qscale;
|
|
double last_qscale_for[3]; /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */
|
|
int last_non_b_pict_type;
|
|
double accum_p_qp; /* for determining I-frame quant */
|
|
double accum_p_norm;
|
|
double last_accum_p_norm;
|
|
double lmin[3]; /* min qscale by frame type */
|
|
double lmax[3];
|
|
double lstep; /* max change (multiply) in qscale per frame */
|
|
struct
|
|
{
|
|
uint16_t *qp_buffer[2]; /* Global buffers for converting MB-tree quantizer data. */
|
|
int qpbuf_pos; /* In order to handle pyramid reordering, QP buffer acts as a stack.
|
|
* This value is the current position (0 or 1). */
|
|
int src_mb_count;
|
|
|
|
/* For rescaling */
|
|
int rescale_enabled;
|
|
float *scale_buffer[2]; /* Intermediate buffers */
|
|
int filtersize[2]; /* filter size (H/V) */
|
|
float *coeffs[2];
|
|
int *pos[2];
|
|
int srcdim[2]; /* Source dimensions (W/H) */
|
|
} mbtree;
|
|
|
|
/* MBRC stuff */
|
|
volatile float frame_size_estimated; /* Access to this variable must be atomic: double is
|
|
* not atomic on all arches we care about */
|
|
volatile float bits_so_far;
|
|
double frame_size_maximum; /* Maximum frame size due to MinCR */
|
|
double frame_size_planned;
|
|
double slice_size_planned;
|
|
predictor_t *row_pred;
|
|
predictor_t row_preds[3][2];
|
|
predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */
|
|
int bframes; /* # consecutive B-frames before this P-frame */
|
|
int bframe_bits; /* total cost of those frames */
|
|
|
|
int i_zones;
|
|
x264_zone_t *zones;
|
|
x264_zone_t *prev_zone;
|
|
|
|
/* hrd stuff */
|
|
int initial_cpb_removal_delay;
|
|
int initial_cpb_removal_delay_offset;
|
|
double nrt_first_access_unit; /* nominal removal time */
|
|
double previous_cpb_final_arrival_time;
|
|
uint64_t hrd_multiply_denom;
|
|
};
|
|
|
|
|
|
static int parse_zones( x264_t *h );
|
|
static int init_pass2(x264_t *);
|
|
static float rate_estimate_qscale( x264_t *h );
|
|
static int update_vbv( x264_t *h, int bits );
|
|
static void update_vbv_plan( x264_t *h, int overhead );
|
|
static float predict_size( predictor_t *p, float q, float var );
|
|
static void update_predictor( predictor_t *p, float q, float var, float bits );
|
|
|
|
#define CMP_OPT_FIRST_PASS( opt, param_val )\
|
|
{\
|
|
if( ( p = strstr( opts, opt "=" ) ) && sscanf( p, opt "=%d" , &i ) && param_val != i )\
|
|
{\
|
|
x264_log( h, X264_LOG_ERROR, "different " opt " setting than first pass (%d vs %d)\n", param_val, i );\
|
|
return -1;\
|
|
}\
|
|
}
|
|
|
|
/* Terminology:
|
|
* qp = h.264's quantizer
|
|
* qscale = linearized quantizer = Lagrange multiplier
|
|
*/
|
|
static inline float qp2qscale( float qp )
|
|
{
|
|
return 0.85f * powf( 2.0f, ( qp - (12.0f + QP_BD_OFFSET) ) / 6.0f );
|
|
}
|
|
static inline float qscale2qp( float qscale )
|
|
{
|
|
return (12.0f + QP_BD_OFFSET) + 6.0f * log2f( qscale/0.85f );
|
|
}
|
|
|
|
/* Texture bitrate is not quite inversely proportional to qscale,
|
|
* probably due the the changing number of SKIP blocks.
|
|
* MV bits level off at about qp<=12, because the lambda used
|
|
* for motion estimation is constant there. */
|
|
static inline double qscale2bits( ratecontrol_entry_t *rce, double qscale )
|
|
{
|
|
if( qscale<0.1 )
|
|
qscale = 0.1;
|
|
return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 )
|
|
+ rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 )
|
|
+ rce->misc_bits;
|
|
}
|
|
|
|
static ALWAYS_INLINE uint32_t ac_energy_var( uint64_t sum_ssd, int shift, x264_frame_t *frame, int i, int b_store )
|
|
{
|
|
uint32_t sum = sum_ssd;
|
|
uint32_t ssd = sum_ssd >> 32;
|
|
if( b_store )
|
|
{
|
|
frame->i_pixel_sum[i] += sum;
|
|
frame->i_pixel_ssd[i] += ssd;
|
|
}
|
|
return ssd - ((uint64_t)sum * sum >> shift);
|
|
}
|
|
|
|
static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i, int b_chroma, int b_field, int b_store )
|
|
{
|
|
int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16;
|
|
int stride = frame->i_stride[i];
|
|
int offset = b_field
|
|
? 16 * mb_x + height * (mb_y&~1) * stride + (mb_y&1) * stride
|
|
: 16 * mb_x + height * mb_y * stride;
|
|
stride <<= b_field;
|
|
if( b_chroma )
|
|
{
|
|
ALIGNED_ARRAY_64( pixel, pix,[FENC_STRIDE*16] );
|
|
int chromapix = h->luma2chroma_pixel[PIXEL_16x16];
|
|
int shift = 7 - CHROMA_V_SHIFT;
|
|
|
|
h->mc.load_deinterleave_chroma_fenc( pix, frame->plane[1] + offset, stride, height );
|
|
return ac_energy_var( h->pixf.var[chromapix]( pix, FENC_STRIDE ), shift, frame, 1, b_store )
|
|
+ ac_energy_var( h->pixf.var[chromapix]( pix+FENC_STRIDE/2, FENC_STRIDE ), shift, frame, 2, b_store );
|
|
}
|
|
else
|
|
return ac_energy_var( h->pixf.var[PIXEL_16x16]( frame->plane[i] + offset, stride ), 8, frame, i, b_store );
|
|
}
|
|
|
|
// Find the total AC energy of the block in all planes.
|
|
static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
|
|
{
|
|
/* This function contains annoying hacks because GCC has a habit of reordering emms
|
|
* and putting it after floating point ops. As a result, we put the emms at the end of the
|
|
* function and make sure that its always called before the float math. Noinline makes
|
|
* sure no reordering goes on. */
|
|
uint32_t var;
|
|
x264_prefetch_fenc( h, frame, mb_x, mb_y );
|
|
if( h->mb.b_adaptive_mbaff )
|
|
{
|
|
/* We don't know the super-MB mode we're going to pick yet, so
|
|
* simply try both and pick the lower of the two. */
|
|
uint32_t var_interlaced, var_progressive;
|
|
var_interlaced = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 1, 1 );
|
|
var_progressive = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 0, 0 );
|
|
if( CHROMA444 )
|
|
{
|
|
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 1, 1 );
|
|
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 0, 0 );
|
|
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 1, 1 );
|
|
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 0, 0 );
|
|
}
|
|
else if( CHROMA_FORMAT )
|
|
{
|
|
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 1, 1 );
|
|
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 0, 0 );
|
|
}
|
|
var = X264_MIN( var_interlaced, var_progressive );
|
|
}
|
|
else
|
|
{
|
|
var = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, PARAM_INTERLACED, 1 );
|
|
if( CHROMA444 )
|
|
{
|
|
var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, PARAM_INTERLACED, 1 );
|
|
var += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, PARAM_INTERLACED, 1 );
|
|
}
|
|
else if( CHROMA_FORMAT )
|
|
var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, PARAM_INTERLACED, 1 );
|
|
}
|
|
x264_emms();
|
|
return var;
|
|
}
|
|
|
|
void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame, float *quant_offsets )
|
|
{
|
|
/* Initialize frame stats */
|
|
for( int i = 0; i < 3; i++ )
|
|
{
|
|
frame->i_pixel_sum[i] = 0;
|
|
frame->i_pixel_ssd[i] = 0;
|
|
}
|
|
|
|
/* Degenerate cases */
|
|
if( h->param.rc.i_aq_mode == X264_AQ_NONE || h->param.rc.f_aq_strength == 0 )
|
|
{
|
|
/* Need to init it anyways for MB tree */
|
|
if( h->param.rc.i_aq_mode && h->param.rc.f_aq_strength == 0 )
|
|
{
|
|
if( quant_offsets )
|
|
{
|
|
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
|
|
frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = quant_offsets[mb_xy];
|
|
if( h->frames.b_have_lowres )
|
|
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
|
|
frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8( frame->f_qp_offset[mb_xy] );
|
|
}
|
|
else
|
|
{
|
|
memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
|
|
memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
|
|
if( h->frames.b_have_lowres )
|
|
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
|
|
frame->i_inv_qscale_factor[mb_xy] = 256;
|
|
}
|
|
}
|
|
/* Need variance data for weighted prediction */
|
|
if( h->param.analyse.i_weighted_pred )
|
|
{
|
|
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
|
|
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
|
|
ac_energy_mb( h, mb_x, mb_y, frame );
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
/* Actual adaptive quantization */
|
|
else
|
|
{
|
|
/* constants chosen to result in approximately the same overall bitrate as without AQ.
|
|
* FIXME: while they're written in 5 significant digits, they're only tuned to 2. */
|
|
float strength;
|
|
float avg_adj = 0.f;
|
|
float bias_strength = 0.f;
|
|
|
|
if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE || h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED )
|
|
{
|
|
float bit_depth_correction = 1.f / (1 << (2*(BIT_DEPTH-8)));
|
|
float avg_adj_pow2 = 0.f;
|
|
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
|
|
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
|
|
{
|
|
uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
|
|
float qp_adj = powf( energy * bit_depth_correction + 1, 0.125f );
|
|
frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
|
|
avg_adj += qp_adj;
|
|
avg_adj_pow2 += qp_adj * qp_adj;
|
|
}
|
|
avg_adj /= h->mb.i_mb_count;
|
|
avg_adj_pow2 /= h->mb.i_mb_count;
|
|
strength = h->param.rc.f_aq_strength * avg_adj;
|
|
avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - 14.f) / avg_adj;
|
|
bias_strength = h->param.rc.f_aq_strength;
|
|
}
|
|
else
|
|
strength = h->param.rc.f_aq_strength * 1.0397f;
|
|
|
|
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
|
|
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
|
|
{
|
|
float qp_adj;
|
|
int mb_xy = mb_x + mb_y*h->mb.i_mb_stride;
|
|
if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED )
|
|
{
|
|
qp_adj = frame->f_qp_offset[mb_xy];
|
|
qp_adj = strength * (qp_adj - avg_adj) + bias_strength * (1.f - 14.f / (qp_adj * qp_adj));
|
|
}
|
|
else if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
|
|
{
|
|
qp_adj = frame->f_qp_offset[mb_xy];
|
|
qp_adj = strength * (qp_adj - avg_adj);
|
|
}
|
|
else
|
|
{
|
|
uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
|
|
qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - (14.427f + 2*(BIT_DEPTH-8)));
|
|
}
|
|
if( quant_offsets )
|
|
qp_adj += quant_offsets[mb_xy];
|
|
frame->f_qp_offset[mb_xy] =
|
|
frame->f_qp_offset_aq[mb_xy] = qp_adj;
|
|
if( h->frames.b_have_lowres )
|
|
frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8(qp_adj);
|
|
}
|
|
}
|
|
|
|
/* Remove mean from SSD calculation */
|
|
for( int i = 0; i < 3; i++ )
|
|
{
|
|
uint64_t ssd = frame->i_pixel_ssd[i];
|
|
uint64_t sum = frame->i_pixel_sum[i];
|
|
int width = 16*h->mb.i_mb_width >> (i && CHROMA_H_SHIFT);
|
|
int height = 16*h->mb.i_mb_height >> (i && CHROMA_V_SHIFT);
|
|
frame->i_pixel_ssd[i] = ssd - (sum * sum + width * height / 2) / (width * height);
|
|
}
|
|
}
|
|
|
|
static int macroblock_tree_rescale_init( x264_t *h, x264_ratecontrol_t *rc )
|
|
{
|
|
/* Use fractional QP array dimensions to compensate for edge padding */
|
|
float srcdim[2] = {rc->mbtree.srcdim[0] / 16.f, rc->mbtree.srcdim[1] / 16.f};
|
|
float dstdim[2] = { h->param.i_width / 16.f, h->param.i_height / 16.f};
|
|
int srcdimi[2] = {ceil(srcdim[0]), ceil(srcdim[1])};
|
|
int dstdimi[2] = {ceil(dstdim[0]), ceil(dstdim[1])};
|
|
if( h->param.b_interlaced || h->param.b_fake_interlaced )
|
|
{
|
|
srcdimi[1] = (srcdimi[1]+1)&~1;
|
|
dstdimi[1] = (dstdimi[1]+1)&~1;
|
|
}
|
|
|
|
rc->mbtree.src_mb_count = srcdimi[0] * srcdimi[1];
|
|
|
|
CHECKED_MALLOC( rc->mbtree.qp_buffer[0], rc->mbtree.src_mb_count * sizeof(uint16_t) );
|
|
if( h->param.i_bframe_pyramid && h->param.rc.b_stat_read )
|
|
CHECKED_MALLOC( rc->mbtree.qp_buffer[1], rc->mbtree.src_mb_count * sizeof(uint16_t) );
|
|
rc->mbtree.qpbuf_pos = -1;
|
|
|
|
/* No rescaling to do */
|
|
if( srcdimi[0] == dstdimi[0] && srcdimi[1] == dstdimi[1] )
|
|
return 0;
|
|
|
|
rc->mbtree.rescale_enabled = 1;
|
|
|
|
/* Allocate intermediate scaling buffers */
|
|
CHECKED_MALLOC( rc->mbtree.scale_buffer[0], srcdimi[0] * srcdimi[1] * sizeof(float) );
|
|
CHECKED_MALLOC( rc->mbtree.scale_buffer[1], dstdimi[0] * srcdimi[1] * sizeof(float) );
|
|
|
|
/* Allocate and calculate resize filter parameters and coefficients */
|
|
for( int i = 0; i < 2; i++ )
|
|
{
|
|
if( srcdim[i] > dstdim[i] ) // downscale
|
|
rc->mbtree.filtersize[i] = 1 + (2 * srcdimi[i] + dstdimi[i] - 1) / dstdimi[i];
|
|
else // upscale
|
|
rc->mbtree.filtersize[i] = 3;
|
|
|
|
CHECKED_MALLOC( rc->mbtree.coeffs[i], rc->mbtree.filtersize[i] * dstdimi[i] * sizeof(float) );
|
|
CHECKED_MALLOC( rc->mbtree.pos[i], dstdimi[i] * sizeof(int) );
|
|
|
|
/* Initialize filter coefficients */
|
|
float inc = srcdim[i] / dstdim[i];
|
|
float dmul = inc > 1.f ? dstdim[i] / srcdim[i] : 1.f;
|
|
float dstinsrc = 0.5f * inc - 0.5f;
|
|
int filtersize = rc->mbtree.filtersize[i];
|
|
for( int j = 0; j < dstdimi[i]; j++ )
|
|
{
|
|
int pos = dstinsrc - (filtersize - 2.f) * 0.5f;
|
|
float sum = 0.0;
|
|
rc->mbtree.pos[i][j] = pos;
|
|
for( int k = 0; k < filtersize; k++ )
|
|
{
|
|
float d = fabs( pos + k - dstinsrc ) * dmul;
|
|
float coeff = X264_MAX( 1.f - d, 0 );
|
|
rc->mbtree.coeffs[i][j * filtersize + k] = coeff;
|
|
sum += coeff;
|
|
}
|
|
sum = 1.0f / sum;
|
|
for( int k = 0; k < filtersize; k++ )
|
|
rc->mbtree.coeffs[i][j * filtersize + k] *= sum;
|
|
dstinsrc += inc;
|
|
}
|
|
}
|
|
|
|
/* Write back actual qp array dimensions */
|
|
rc->mbtree.srcdim[0] = srcdimi[0];
|
|
rc->mbtree.srcdim[1] = srcdimi[1];
|
|
return 0;
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
static void macroblock_tree_rescale_destroy( x264_ratecontrol_t *rc )
|
|
{
|
|
for( int i = 0; i < 2; i++ )
|
|
{
|
|
x264_free( rc->mbtree.qp_buffer[i] );
|
|
x264_free( rc->mbtree.scale_buffer[i] );
|
|
x264_free( rc->mbtree.coeffs[i] );
|
|
x264_free( rc->mbtree.pos[i] );
|
|
}
|
|
}
|
|
|
|
static ALWAYS_INLINE float tapfilter( float *src, int pos, int max, int stride, float *coeff, int filtersize )
|
|
{
|
|
float sum = 0.f;
|
|
for( int i = 0; i < filtersize; i++, pos++ )
|
|
sum += src[x264_clip3( pos, 0, max-1 )*stride] * coeff[i];
|
|
return sum;
|
|
}
|
|
|
|
static void macroblock_tree_rescale( x264_t *h, x264_ratecontrol_t *rc, float *dst )
|
|
{
|
|
float *input, *output;
|
|
int filtersize, stride, height;
|
|
|
|
/* H scale first */
|
|
input = rc->mbtree.scale_buffer[0];
|
|
output = rc->mbtree.scale_buffer[1];
|
|
filtersize = rc->mbtree.filtersize[0];
|
|
stride = rc->mbtree.srcdim[0];
|
|
height = rc->mbtree.srcdim[1];
|
|
for( int y = 0; y < height; y++, input += stride, output += h->mb.i_mb_width )
|
|
{
|
|
float *coeff = rc->mbtree.coeffs[0];
|
|
for( int x = 0; x < h->mb.i_mb_width; x++, coeff+=filtersize )
|
|
output[x] = tapfilter( input, rc->mbtree.pos[0][x], stride, 1, coeff, filtersize );
|
|
}
|
|
|
|
/* V scale next */
|
|
input = rc->mbtree.scale_buffer[1];
|
|
output = dst;
|
|
filtersize = rc->mbtree.filtersize[1];
|
|
stride = h->mb.i_mb_width;
|
|
height = rc->mbtree.srcdim[1];
|
|
for( int x = 0; x < h->mb.i_mb_width; x++, input++, output++ )
|
|
{
|
|
float *coeff = rc->mbtree.coeffs[1];
|
|
for( int y = 0; y < h->mb.i_mb_height; y++, coeff+=filtersize )
|
|
output[y*stride] = tapfilter( input, rc->mbtree.pos[1][y], height, stride, coeff, filtersize );
|
|
}
|
|
}
|
|
|
|
int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame, float *quant_offsets )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type;
|
|
|
|
if( rc->entry[frame->i_frame].kept_as_ref )
|
|
{
|
|
uint8_t i_type;
|
|
if( rc->mbtree.qpbuf_pos < 0 )
|
|
{
|
|
do
|
|
{
|
|
rc->mbtree.qpbuf_pos++;
|
|
|
|
if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) )
|
|
goto fail;
|
|
if( fread( rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], sizeof(uint16_t), rc->mbtree.src_mb_count, rc->p_mbtree_stat_file_in ) != (unsigned)rc->mbtree.src_mb_count )
|
|
goto fail;
|
|
|
|
if( i_type != i_type_actual && rc->mbtree.qpbuf_pos == 1 )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual );
|
|
return -1;
|
|
}
|
|
} while( i_type != i_type_actual );
|
|
}
|
|
|
|
float *dst = rc->mbtree.rescale_enabled ? rc->mbtree.scale_buffer[0] : frame->f_qp_offset;
|
|
h->mc.mbtree_fix8_unpack( dst, rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], rc->mbtree.src_mb_count );
|
|
if( rc->mbtree.rescale_enabled )
|
|
macroblock_tree_rescale( h, rc, frame->f_qp_offset );
|
|
if( h->frames.b_have_lowres )
|
|
for( int i = 0; i < h->mb.i_mb_count; i++ )
|
|
frame->i_inv_qscale_factor[i] = x264_exp2fix8( frame->f_qp_offset[i] );
|
|
rc->mbtree.qpbuf_pos--;
|
|
}
|
|
else
|
|
x264_adaptive_quant_frame( h, frame, quant_offsets );
|
|
return 0;
|
|
fail:
|
|
x264_log( h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n" );
|
|
return -1;
|
|
}
|
|
|
|
int x264_reference_build_list_optimal( x264_t *h )
|
|
{
|
|
ratecontrol_entry_t *rce = h->rc->rce;
|
|
x264_frame_t *frames[16];
|
|
x264_weight_t weights[16][3];
|
|
int refcount[16];
|
|
|
|
if( rce->refs != h->i_ref[0] )
|
|
return -1;
|
|
|
|
memcpy( frames, h->fref[0], sizeof(frames) );
|
|
memcpy( refcount, rce->refcount, sizeof(refcount) );
|
|
memcpy( weights, h->fenc->weight, sizeof(weights) );
|
|
memset( &h->fenc->weight[1][0], 0, sizeof(x264_weight_t[15][3]) );
|
|
|
|
/* For now don't reorder ref 0; it seems to lower quality
|
|
in most cases due to skips. */
|
|
for( int ref = 1; ref < h->i_ref[0]; ref++ )
|
|
{
|
|
int max = -1;
|
|
int bestref = 1;
|
|
|
|
for( int i = 1; i < h->i_ref[0]; i++ )
|
|
/* Favor lower POC as a tiebreaker. */
|
|
COPY2_IF_GT( max, refcount[i], bestref, i );
|
|
|
|
/* FIXME: If there are duplicates from frames other than ref0 then it is possible
|
|
* that the optimal ordering doesn't place every duplicate. */
|
|
|
|
refcount[bestref] = -1;
|
|
h->fref[0][ref] = frames[bestref];
|
|
memcpy( h->fenc->weight[ref], weights[bestref], sizeof(weights[bestref]) );
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static char *strcat_filename( char *input, char *suffix )
|
|
{
|
|
char *output = x264_malloc( strlen( input ) + strlen( suffix ) + 1 );
|
|
if( !output )
|
|
return NULL;
|
|
strcpy( output, input );
|
|
strcat( output, suffix );
|
|
return output;
|
|
}
|
|
|
|
void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
if( !b_init && rc->b_2pass )
|
|
return;
|
|
|
|
if( h->param.rc.i_rc_method == X264_RC_CRF )
|
|
{
|
|
/* Arbitrary rescaling to make CRF somewhat similar to QP.
|
|
* Try to compensate for MB-tree's effects as well. */
|
|
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
|
|
double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
|
|
rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress )
|
|
/ qp2qscale( h->param.rc.f_rf_constant + mbtree_offset + QP_BD_OFFSET );
|
|
}
|
|
|
|
if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 )
|
|
{
|
|
/* We don't support changing the ABR bitrate right now,
|
|
so if the stream starts as CBR, keep it CBR. */
|
|
if( rc->b_vbv_min_rate )
|
|
h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
|
|
|
|
if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) )
|
|
{
|
|
h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps;
|
|
x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n",
|
|
h->param.rc.i_vbv_buffer_size );
|
|
}
|
|
|
|
int kilobit_size = h->param.i_avcintra_class ? 1024 : 1000;
|
|
int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * kilobit_size;
|
|
int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * kilobit_size;
|
|
|
|
/* Init HRD */
|
|
if( h->param.i_nal_hrd && b_init )
|
|
{
|
|
h->sps->vui.hrd.i_cpb_cnt = 1;
|
|
h->sps->vui.hrd.b_cbr_hrd = h->param.i_nal_hrd == X264_NAL_HRD_CBR;
|
|
h->sps->vui.hrd.i_time_offset_length = 0;
|
|
|
|
#define BR_SHIFT 6
|
|
#define CPB_SHIFT 4
|
|
|
|
// normalize HRD size and rate to the value / scale notation
|
|
h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( vbv_max_bitrate ) - BR_SHIFT, 0, 15 );
|
|
h->sps->vui.hrd.i_bit_rate_value = vbv_max_bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
|
|
h->sps->vui.hrd.i_bit_rate_unscaled = h->sps->vui.hrd.i_bit_rate_value << ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
|
|
h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( vbv_buffer_size ) - CPB_SHIFT, 0, 15 );
|
|
h->sps->vui.hrd.i_cpb_size_value = vbv_buffer_size >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
|
|
h->sps->vui.hrd.i_cpb_size_unscaled = h->sps->vui.hrd.i_cpb_size_value << ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
|
|
|
|
#undef CPB_SHIFT
|
|
#undef BR_SHIFT
|
|
|
|
// arbitrary
|
|
#define MAX_DURATION 0.5
|
|
|
|
int max_cpb_output_delay = X264_MIN( h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick, INT_MAX );
|
|
int max_dpb_output_delay = h->sps->vui.i_max_dec_frame_buffering * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick;
|
|
int max_delay = (int)(90000.0 * (double)h->sps->vui.hrd.i_cpb_size_unscaled / h->sps->vui.hrd.i_bit_rate_unscaled + 0.5);
|
|
|
|
h->sps->vui.hrd.i_initial_cpb_removal_delay_length = 2 + x264_clip3( 32 - x264_clz( max_delay ), 4, 22 );
|
|
h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 31 );
|
|
h->sps->vui.hrd.i_dpb_output_delay_length = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 31 );
|
|
|
|
#undef MAX_DURATION
|
|
|
|
vbv_buffer_size = h->sps->vui.hrd.i_cpb_size_unscaled;
|
|
vbv_max_bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
|
|
}
|
|
else if( h->param.i_nal_hrd && !b_init )
|
|
{
|
|
x264_log( h, X264_LOG_WARNING, "VBV parameters cannot be changed when NAL HRD is in use\n" );
|
|
return;
|
|
}
|
|
h->sps->vui.hrd.i_bit_rate_unscaled = vbv_max_bitrate;
|
|
h->sps->vui.hrd.i_cpb_size_unscaled = vbv_buffer_size;
|
|
|
|
if( rc->b_vbv_min_rate )
|
|
rc->bitrate = (double)h->param.rc.i_bitrate * kilobit_size;
|
|
rc->buffer_rate = vbv_max_bitrate / rc->fps;
|
|
rc->vbv_max_rate = vbv_max_bitrate;
|
|
rc->buffer_size = vbv_buffer_size;
|
|
rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size;
|
|
if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR )
|
|
rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size
|
|
* 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate);
|
|
if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.f_rf_constant_max )
|
|
{
|
|
rc->rate_factor_max_increment = h->param.rc.f_rf_constant_max - h->param.rc.f_rf_constant;
|
|
if( rc->rate_factor_max_increment <= 0 )
|
|
{
|
|
x264_log( h, X264_LOG_WARNING, "CRF max must be greater than CRF\n" );
|
|
rc->rate_factor_max_increment = 0;
|
|
}
|
|
}
|
|
if( b_init )
|
|
{
|
|
if( h->param.rc.f_vbv_buffer_init > 1. )
|
|
h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
|
|
h->param.rc.f_vbv_buffer_init = x264_clip3f( X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ), 0, 1);
|
|
rc->buffer_fill_final =
|
|
rc->buffer_fill_final_min = rc->buffer_size * h->param.rc.f_vbv_buffer_init * h->sps->vui.i_time_scale;
|
|
rc->b_vbv = 1;
|
|
rc->b_vbv_min_rate = !rc->b_2pass
|
|
&& h->param.rc.i_rc_method == X264_RC_ABR
|
|
&& h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate;
|
|
}
|
|
}
|
|
}
|
|
|
|
int x264_ratecontrol_new( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rc;
|
|
|
|
x264_emms();
|
|
|
|
CHECKED_MALLOCZERO( h->rc, h->param.i_threads * sizeof(x264_ratecontrol_t) );
|
|
rc = h->rc;
|
|
|
|
rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read;
|
|
rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read;
|
|
|
|
/* FIXME: use integers */
|
|
if( h->param.i_fps_num > 0 && h->param.i_fps_den > 0 )
|
|
rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den;
|
|
else
|
|
rc->fps = 25.0;
|
|
|
|
if( h->param.rc.b_mb_tree )
|
|
{
|
|
h->param.rc.f_pb_factor = 1;
|
|
rc->qcompress = 1;
|
|
}
|
|
else
|
|
rc->qcompress = h->param.rc.f_qcompress;
|
|
|
|
rc->bitrate = h->param.rc.i_bitrate * (h->param.i_avcintra_class ? 1024. : 1000.);
|
|
rc->rate_tolerance = h->param.rc.f_rate_tolerance;
|
|
rc->nmb = h->mb.i_mb_count;
|
|
rc->last_non_b_pict_type = -1;
|
|
rc->cbr_decay = 1.0;
|
|
|
|
if( h->param.rc.i_rc_method != X264_RC_ABR && h->param.rc.b_stat_read )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "CRF/CQP is incompatible with 2pass.\n" );
|
|
return -1;
|
|
}
|
|
|
|
x264_ratecontrol_init_reconfigurable( h, 1 );
|
|
|
|
if( h->param.i_nal_hrd )
|
|
{
|
|
uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale;
|
|
uint64_t num = 90000;
|
|
x264_reduce_fraction64( &num, &denom );
|
|
rc->hrd_multiply_denom = 90000 / num;
|
|
|
|
double bits_required = log2( num )
|
|
+ log2( h->sps->vui.i_time_scale )
|
|
+ log2( h->sps->vui.hrd.i_cpb_size_unscaled );
|
|
if( bits_required >= 63 )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "HRD with very large timescale and bufsize not supported\n" );
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if( rc->rate_tolerance < 0.01 )
|
|
{
|
|
x264_log( h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n" );
|
|
rc->rate_tolerance = 0.01;
|
|
}
|
|
|
|
h->mb.b_variable_qp = rc->b_vbv || h->param.rc.i_aq_mode;
|
|
|
|
if( rc->b_abr )
|
|
{
|
|
/* FIXME ABR_INIT_QP is actually used only in CRF */
|
|
#define ABR_INIT_QP (( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) + QP_BD_OFFSET)
|
|
rc->accum_p_norm = .01;
|
|
rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm;
|
|
/* estimated ratio that produces a reasonable QP for the first I-frame */
|
|
rc->cplxr_sum = .01 * pow( 7.0e5, rc->qcompress ) * pow( h->mb.i_mb_count, 0.5 );
|
|
rc->wanted_bits_window = 1.0 * rc->bitrate / rc->fps;
|
|
rc->last_non_b_pict_type = SLICE_TYPE_I;
|
|
}
|
|
|
|
rc->ip_offset = 6.0 * log2f( h->param.rc.f_ip_factor );
|
|
rc->pb_offset = 6.0 * log2f( h->param.rc.f_pb_factor );
|
|
rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
|
|
rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, QP_MAX );
|
|
rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, QP_MAX );
|
|
h->mb.ip_offset = rc->ip_offset + 0.5;
|
|
|
|
rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 );
|
|
rc->last_qscale = qp2qscale( 26 + QP_BD_OFFSET );
|
|
int num_preds = h->param.b_sliced_threads * h->param.i_threads + 1;
|
|
CHECKED_MALLOC( rc->pred, 5 * sizeof(predictor_t) * num_preds );
|
|
CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) );
|
|
static const float pred_coeff_table[3] = { 1.0, 1.0, 1.5 };
|
|
for( int i = 0; i < 3; i++ )
|
|
{
|
|
rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP );
|
|
rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min );
|
|
rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max );
|
|
for( int j = 0; j < num_preds; j++ )
|
|
{
|
|
rc->pred[i+j*5].coeff_min = pred_coeff_table[i] / 2;
|
|
rc->pred[i+j*5].coeff = pred_coeff_table[i];
|
|
rc->pred[i+j*5].count = 1.0;
|
|
rc->pred[i+j*5].decay = 0.5;
|
|
rc->pred[i+j*5].offset = 0.0;
|
|
}
|
|
for( int j = 0; j < 2; j++ )
|
|
{
|
|
rc->row_preds[i][j].coeff_min = .25 / 4;
|
|
rc->row_preds[i][j].coeff = .25;
|
|
rc->row_preds[i][j].count = 1.0;
|
|
rc->row_preds[i][j].decay = 0.5;
|
|
rc->row_preds[i][j].offset = 0.0;
|
|
}
|
|
}
|
|
rc->pred_b_from_p->coeff_min = 0.5 / 2;
|
|
rc->pred_b_from_p->coeff = 0.5;
|
|
rc->pred_b_from_p->count = 1.0;
|
|
rc->pred_b_from_p->decay = 0.5;
|
|
rc->pred_b_from_p->offset = 0.0;
|
|
|
|
if( parse_zones( h ) < 0 )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "failed to parse zones\n" );
|
|
return -1;
|
|
}
|
|
|
|
/* Load stat file and init 2pass algo */
|
|
if( h->param.rc.b_stat_read )
|
|
{
|
|
char *p, *stats_in, *stats_buf;
|
|
|
|
/* read 1st pass stats */
|
|
assert( h->param.rc.psz_stat_in );
|
|
stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in );
|
|
if( !stats_buf )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
|
|
return -1;
|
|
}
|
|
if( h->param.rc.b_mb_tree )
|
|
{
|
|
char *mbtree_stats_in = strcat_filename( h->param.rc.psz_stat_in, ".mbtree" );
|
|
if( !mbtree_stats_in )
|
|
return -1;
|
|
rc->p_mbtree_stat_file_in = x264_fopen( mbtree_stats_in, "rb" );
|
|
x264_free( mbtree_stats_in );
|
|
if( !rc->p_mbtree_stat_file_in )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* check whether 1st pass options were compatible with current options */
|
|
if( strncmp( stats_buf, "#options:", 9 ) )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "options list in stats file not valid\n" );
|
|
return -1;
|
|
}
|
|
|
|
float res_factor, res_factor_bits;
|
|
{
|
|
int i, j;
|
|
uint32_t k, l;
|
|
char *opts = stats_buf;
|
|
stats_in = strchr( stats_buf, '\n' );
|
|
if( !stats_in )
|
|
return -1;
|
|
*stats_in = '\0';
|
|
stats_in++;
|
|
if( sscanf( opts, "#options: %dx%d", &i, &j ) != 2 )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "resolution specified in stats file not valid\n" );
|
|
return -1;
|
|
}
|
|
else if( h->param.rc.b_mb_tree )
|
|
{
|
|
rc->mbtree.srcdim[0] = i;
|
|
rc->mbtree.srcdim[1] = j;
|
|
}
|
|
res_factor = (float)h->param.i_width * h->param.i_height / (i*j);
|
|
/* Change in bits relative to resolution isn't quite linear on typical sources,
|
|
* so we'll at least try to roughly approximate this effect. */
|
|
res_factor_bits = powf( res_factor, 0.7 );
|
|
|
|
if( !( p = strstr( opts, "timebase=" ) ) || sscanf( p, "timebase=%u/%u", &k, &l ) != 2 )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "timebase specified in stats file not valid\n" );
|
|
return -1;
|
|
}
|
|
if( k != h->param.i_timebase_num || l != h->param.i_timebase_den )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "timebase mismatch with 1st pass (%u/%u vs %u/%u)\n",
|
|
h->param.i_timebase_num, h->param.i_timebase_den, k, l );
|
|
return -1;
|
|
}
|
|
|
|
CMP_OPT_FIRST_PASS( "bitdepth", BIT_DEPTH );
|
|
CMP_OPT_FIRST_PASS( "weightp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) );
|
|
CMP_OPT_FIRST_PASS( "bframes", h->param.i_bframe );
|
|
CMP_OPT_FIRST_PASS( "b_pyramid", h->param.i_bframe_pyramid );
|
|
CMP_OPT_FIRST_PASS( "intra_refresh", h->param.b_intra_refresh );
|
|
CMP_OPT_FIRST_PASS( "open_gop", h->param.b_open_gop );
|
|
CMP_OPT_FIRST_PASS( "bluray_compat", h->param.b_bluray_compat );
|
|
CMP_OPT_FIRST_PASS( "mbtree", h->param.rc.b_mb_tree );
|
|
|
|
if( (p = strstr( opts, "interlaced=" )) )
|
|
{
|
|
char *current = h->param.b_interlaced ? h->param.b_tff ? "tff" : "bff" : h->param.b_fake_interlaced ? "fake" : "0";
|
|
char buf[5];
|
|
sscanf( p, "interlaced=%4s", buf );
|
|
if( strcmp( current, buf ) )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "different interlaced setting than first pass (%s vs %s)\n", current, buf );
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if( (p = strstr( opts, "keyint=" )) )
|
|
{
|
|
p += 7;
|
|
char buf[13] = "infinite ";
|
|
if( h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE )
|
|
sprintf( buf, "%d ", h->param.i_keyint_max );
|
|
if( strncmp( p, buf, strlen(buf) ) )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "different keyint setting than first pass (%.*s vs %.*s)\n",
|
|
strlen(buf)-1, buf, strcspn(p, " "), p );
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR )
|
|
x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" );
|
|
|
|
if( !strstr( opts, "direct=3" ) && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
|
|
{
|
|
x264_log( h, X264_LOG_WARNING, "direct=auto not used on the first pass\n" );
|
|
h->mb.b_direct_auto_write = 1;
|
|
}
|
|
|
|
if( ( p = strstr( opts, "b_adapt=" ) ) && sscanf( p, "b_adapt=%d", &i ) && i >= X264_B_ADAPT_NONE && i <= X264_B_ADAPT_TRELLIS )
|
|
h->param.i_bframe_adaptive = i;
|
|
else if( h->param.i_bframe )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "b_adapt method specified in stats file not valid\n" );
|
|
return -1;
|
|
}
|
|
|
|
if( (h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size) && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) )
|
|
h->param.rc.i_lookahead = i;
|
|
}
|
|
|
|
/* find number of pics */
|
|
p = stats_in;
|
|
int num_entries;
|
|
for( num_entries = -1; p; num_entries++ )
|
|
p = strchr( p + 1, ';' );
|
|
if( !num_entries )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "empty stats file\n" );
|
|
return -1;
|
|
}
|
|
rc->num_entries = num_entries;
|
|
|
|
if( h->param.i_frame_total < rc->num_entries && h->param.i_frame_total > 0 )
|
|
{
|
|
x264_log( h, X264_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)\n",
|
|
h->param.i_frame_total, rc->num_entries );
|
|
}
|
|
if( h->param.i_frame_total > rc->num_entries )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)\n",
|
|
h->param.i_frame_total, rc->num_entries );
|
|
return -1;
|
|
}
|
|
|
|
CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) );
|
|
CHECKED_MALLOC( rc->entry_out, rc->num_entries * sizeof(ratecontrol_entry_t*) );
|
|
|
|
/* init all to skipped p frames */
|
|
for( int i = 0; i < rc->num_entries; i++ )
|
|
{
|
|
ratecontrol_entry_t *rce = &rc->entry[i];
|
|
rce->pict_type = SLICE_TYPE_P;
|
|
rce->qscale = rce->new_qscale = qp2qscale( 20 + QP_BD_OFFSET );
|
|
rce->misc_bits = rc->nmb + 10;
|
|
rce->new_qp = 0;
|
|
rc->entry_out[i] = rce;
|
|
}
|
|
|
|
/* read stats */
|
|
p = stats_in;
|
|
double total_qp_aq = 0;
|
|
for( int i = 0; i < rc->num_entries; i++ )
|
|
{
|
|
ratecontrol_entry_t *rce;
|
|
int frame_number = 0;
|
|
int frame_out_number = 0;
|
|
char pict_type = 0;
|
|
int e;
|
|
char *next;
|
|
float qp_rc, qp_aq;
|
|
int ref;
|
|
|
|
next= strchr(p, ';');
|
|
if( next )
|
|
*next++ = 0; //sscanf is unbelievably slow on long strings
|
|
e = sscanf( p, " in:%d out:%d ", &frame_number, &frame_out_number );
|
|
|
|
if( frame_number < 0 || frame_number >= rc->num_entries )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i );
|
|
return -1;
|
|
}
|
|
if( frame_out_number < 0 || frame_out_number >= rc->num_entries )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "bad frame output number (%d) at stats line %d\n", frame_out_number, i );
|
|
return -1;
|
|
}
|
|
rce = &rc->entry[frame_number];
|
|
rc->entry_out[frame_out_number] = rce;
|
|
rce->direct_mode = 0;
|
|
|
|
e += sscanf( p, " in:%*d out:%*d type:%c dur:%"SCNd64" cpbdur:%"SCNd64" q:%f aq:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
|
|
&pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp_rc, &qp_aq, &rce->tex_bits,
|
|
&rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count,
|
|
&rce->s_count, &rce->direct_mode );
|
|
rce->tex_bits *= res_factor_bits;
|
|
rce->mv_bits *= res_factor_bits;
|
|
rce->misc_bits *= res_factor_bits;
|
|
rce->i_count *= res_factor;
|
|
rce->p_count *= res_factor;
|
|
rce->s_count *= res_factor;
|
|
|
|
p = strstr( p, "ref:" );
|
|
if( !p )
|
|
goto parse_error;
|
|
p += 4;
|
|
for( ref = 0; ref < 16; ref++ )
|
|
{
|
|
if( sscanf( p, " %d", &rce->refcount[ref] ) != 1 )
|
|
break;
|
|
p = strchr( p+1, ' ' );
|
|
if( !p )
|
|
goto parse_error;
|
|
}
|
|
rce->refs = ref;
|
|
|
|
/* find weights */
|
|
rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
|
|
char *w = strchr( p, 'w' );
|
|
if( w )
|
|
{
|
|
int count = sscanf( w, "w:%hd,%hd,%hd,%hd,%hd,%hd,%hd,%hd",
|
|
&rce->i_weight_denom[0], &rce->weight[0][0], &rce->weight[0][1],
|
|
&rce->i_weight_denom[1], &rce->weight[1][0], &rce->weight[1][1],
|
|
&rce->weight[2][0], &rce->weight[2][1] );
|
|
if( count == 3 )
|
|
rce->i_weight_denom[1] = -1;
|
|
else if( count != 8 )
|
|
rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
|
|
}
|
|
|
|
if( pict_type != 'b' )
|
|
rce->kept_as_ref = 1;
|
|
switch( pict_type )
|
|
{
|
|
case 'I':
|
|
rce->frame_type = X264_TYPE_IDR;
|
|
rce->pict_type = SLICE_TYPE_I;
|
|
break;
|
|
case 'i':
|
|
rce->frame_type = X264_TYPE_I;
|
|
rce->pict_type = SLICE_TYPE_I;
|
|
break;
|
|
case 'P':
|
|
rce->frame_type = X264_TYPE_P;
|
|
rce->pict_type = SLICE_TYPE_P;
|
|
break;
|
|
case 'B':
|
|
rce->frame_type = X264_TYPE_BREF;
|
|
rce->pict_type = SLICE_TYPE_B;
|
|
break;
|
|
case 'b':
|
|
rce->frame_type = X264_TYPE_B;
|
|
rce->pict_type = SLICE_TYPE_B;
|
|
break;
|
|
default: e = -1; break;
|
|
}
|
|
if( e < 14 )
|
|
{
|
|
parse_error:
|
|
x264_log( h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e );
|
|
return -1;
|
|
}
|
|
rce->qscale = qp2qscale( qp_rc );
|
|
total_qp_aq += qp_aq;
|
|
p = next;
|
|
}
|
|
if( !h->param.b_stitchable )
|
|
h->pps->i_pic_init_qp = SPEC_QP( (int)(total_qp_aq / rc->num_entries + 0.5) );
|
|
|
|
x264_free( stats_buf );
|
|
|
|
if( h->param.rc.i_rc_method == X264_RC_ABR )
|
|
{
|
|
if( init_pass2( h ) < 0 )
|
|
return -1;
|
|
} /* else we're using constant quant, so no need to run the bitrate allocation */
|
|
}
|
|
|
|
/* Open output file */
|
|
/* If input and output files are the same, output to a temp file
|
|
* and move it to the real name only when it's complete */
|
|
if( h->param.rc.b_stat_write )
|
|
{
|
|
char *p;
|
|
rc->psz_stat_file_tmpname = strcat_filename( h->param.rc.psz_stat_out, ".temp" );
|
|
if( !rc->psz_stat_file_tmpname )
|
|
return -1;
|
|
|
|
rc->p_stat_file_out = x264_fopen( rc->psz_stat_file_tmpname, "wb" );
|
|
if( rc->p_stat_file_out == NULL )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
|
|
return -1;
|
|
}
|
|
|
|
p = x264_param2string( &h->param, 1 );
|
|
if( p )
|
|
fprintf( rc->p_stat_file_out, "#options: %s\n", p );
|
|
x264_free( p );
|
|
if( h->param.rc.b_mb_tree && !h->param.rc.b_stat_read )
|
|
{
|
|
rc->psz_mbtree_stat_file_tmpname = strcat_filename( h->param.rc.psz_stat_out, ".mbtree.temp" );
|
|
rc->psz_mbtree_stat_file_name = strcat_filename( h->param.rc.psz_stat_out, ".mbtree" );
|
|
if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name )
|
|
return -1;
|
|
|
|
rc->p_mbtree_stat_file_out = x264_fopen( rc->psz_mbtree_stat_file_tmpname, "wb" );
|
|
if( rc->p_mbtree_stat_file_out == NULL )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) )
|
|
{
|
|
if( !h->param.rc.b_stat_read )
|
|
{
|
|
rc->mbtree.srcdim[0] = h->param.i_width;
|
|
rc->mbtree.srcdim[1] = h->param.i_height;
|
|
}
|
|
if( macroblock_tree_rescale_init( h, rc ) < 0 )
|
|
return -1;
|
|
}
|
|
|
|
for( int i = 0; i<h->param.i_threads; i++ )
|
|
{
|
|
h->thread[i]->rc = rc+i;
|
|
if( i )
|
|
{
|
|
rc[i] = rc[0];
|
|
h->thread[i]->param = h->param;
|
|
h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp;
|
|
h->thread[i]->mb.ip_offset = h->mb.ip_offset;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
|
|
{
|
|
int len = 0;
|
|
char *tok, UNUSED *saveptr=NULL;
|
|
z->param = NULL;
|
|
z->f_bitrate_factor = 1;
|
|
if( 3 <= sscanf(p, "%d,%d,q=%d%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
|
|
z->b_force_qp = 1;
|
|
else if( 3 <= sscanf(p, "%d,%d,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
|
|
z->b_force_qp = 0;
|
|
else if( 2 <= sscanf(p, "%d,%d%n", &z->i_start, &z->i_end, &len) )
|
|
z->b_force_qp = 0;
|
|
else
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "invalid zone: \"%s\"\n", p );
|
|
return -1;
|
|
}
|
|
p += len;
|
|
if( !*p )
|
|
return 0;
|
|
CHECKED_MALLOC( z->param, sizeof(x264_param_t) );
|
|
memcpy( z->param, &h->param, sizeof(x264_param_t) );
|
|
z->param->opaque = NULL;
|
|
z->param->param_free = x264_free;
|
|
while( (tok = strtok_r( p, ",", &saveptr )) )
|
|
{
|
|
char *val = strchr( tok, '=' );
|
|
if( val )
|
|
{
|
|
*val = '\0';
|
|
val++;
|
|
}
|
|
if( x264_param_parse( z->param, tok, val ) )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "invalid zone param: %s = %s\n", tok, val );
|
|
return -1;
|
|
}
|
|
p = NULL;
|
|
}
|
|
return 0;
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
static int parse_zones( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
if( h->param.rc.psz_zones && !h->param.rc.i_zones )
|
|
{
|
|
char *psz_zones, *p;
|
|
CHECKED_MALLOC( psz_zones, strlen( h->param.rc.psz_zones )+1 );
|
|
strcpy( psz_zones, h->param.rc.psz_zones );
|
|
h->param.rc.i_zones = 1;
|
|
for( p = psz_zones; *p; p++ )
|
|
h->param.rc.i_zones += (*p == '/');
|
|
CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) );
|
|
p = psz_zones;
|
|
for( int i = 0; i < h->param.rc.i_zones; i++ )
|
|
{
|
|
int i_tok = strcspn( p, "/" );
|
|
p[i_tok] = 0;
|
|
if( parse_zone( h, &h->param.rc.zones[i], p ) )
|
|
{
|
|
x264_free( psz_zones );
|
|
return -1;
|
|
}
|
|
p += i_tok + 1;
|
|
}
|
|
x264_free( psz_zones );
|
|
}
|
|
|
|
if( h->param.rc.i_zones > 0 )
|
|
{
|
|
for( int i = 0; i < h->param.rc.i_zones; i++ )
|
|
{
|
|
x264_zone_t z = h->param.rc.zones[i];
|
|
if( z.i_start < 0 || z.i_start > z.i_end )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "invalid zone: start=%d end=%d\n",
|
|
z.i_start, z.i_end );
|
|
return -1;
|
|
}
|
|
else if( !z.b_force_qp && z.f_bitrate_factor <= 0 )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "invalid zone: bitrate_factor=%f\n",
|
|
z.f_bitrate_factor );
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
rc->i_zones = h->param.rc.i_zones + 1;
|
|
CHECKED_MALLOC( rc->zones, rc->i_zones * sizeof(x264_zone_t) );
|
|
memcpy( rc->zones+1, h->param.rc.zones, (rc->i_zones-1) * sizeof(x264_zone_t) );
|
|
|
|
// default zone to fall back to if none of the others match
|
|
rc->zones[0].i_start = 0;
|
|
rc->zones[0].i_end = INT_MAX;
|
|
rc->zones[0].b_force_qp = 0;
|
|
rc->zones[0].f_bitrate_factor = 1;
|
|
CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) );
|
|
memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) );
|
|
rc->zones[0].param->opaque = NULL;
|
|
for( int i = 1; i < rc->i_zones; i++ )
|
|
{
|
|
if( !rc->zones[i].param )
|
|
rc->zones[i].param = rc->zones[0].param;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
static x264_zone_t *get_zone( x264_t *h, int frame_num )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
for( int i = rc->i_zones - 1; i >= 0; i-- )
|
|
{
|
|
x264_zone_t *z = &rc->zones[i];
|
|
if( frame_num >= z->i_start && frame_num <= z->i_end )
|
|
return z;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void x264_ratecontrol_summary( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 )
|
|
{
|
|
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
|
|
double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
|
|
x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n",
|
|
qscale2qp( pow( base_cplx, 1 - rc->qcompress )
|
|
* rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset - QP_BD_OFFSET );
|
|
}
|
|
}
|
|
|
|
void x264_ratecontrol_delete( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
int b_regular_file;
|
|
|
|
if( rc->p_stat_file_out )
|
|
{
|
|
b_regular_file = x264_is_regular_file( rc->p_stat_file_out );
|
|
fclose( rc->p_stat_file_out );
|
|
if( h->i_frame >= rc->num_entries && b_regular_file )
|
|
if( x264_rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
|
|
rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out );
|
|
}
|
|
x264_free( rc->psz_stat_file_tmpname );
|
|
}
|
|
if( rc->p_mbtree_stat_file_out )
|
|
{
|
|
b_regular_file = x264_is_regular_file( rc->p_mbtree_stat_file_out );
|
|
fclose( rc->p_mbtree_stat_file_out );
|
|
if( h->i_frame >= rc->num_entries && b_regular_file )
|
|
if( x264_rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
|
|
rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name );
|
|
}
|
|
x264_free( rc->psz_mbtree_stat_file_tmpname );
|
|
x264_free( rc->psz_mbtree_stat_file_name );
|
|
}
|
|
if( rc->p_mbtree_stat_file_in )
|
|
fclose( rc->p_mbtree_stat_file_in );
|
|
x264_free( rc->pred );
|
|
x264_free( rc->pred_b_from_p );
|
|
x264_free( rc->entry );
|
|
x264_free( rc->entry_out );
|
|
macroblock_tree_rescale_destroy( rc );
|
|
if( rc->zones )
|
|
{
|
|
x264_param_cleanup( rc->zones[0].param );
|
|
x264_free( rc->zones[0].param );
|
|
for( int i = 1; i < rc->i_zones; i++ )
|
|
if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free )
|
|
{
|
|
x264_param_cleanup( rc->zones[i].param );
|
|
rc->zones[i].param->param_free( rc->zones[i].param );
|
|
}
|
|
x264_free( rc->zones );
|
|
}
|
|
x264_free( rc );
|
|
}
|
|
|
|
static void accum_p_qp_update( x264_t *h, float qp )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
rc->accum_p_qp *= .95;
|
|
rc->accum_p_norm *= .95;
|
|
rc->accum_p_norm += 1;
|
|
if( h->sh.i_type == SLICE_TYPE_I )
|
|
rc->accum_p_qp += qp + rc->ip_offset;
|
|
else
|
|
rc->accum_p_qp += qp;
|
|
}
|
|
|
|
void x264_ratecontrol_zone_init( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
x264_zone_t *zone = get_zone( h, h->fenc->i_frame );
|
|
if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) )
|
|
x264_encoder_reconfig_apply( h, zone->param );
|
|
rc->prev_zone = zone;
|
|
}
|
|
|
|
/* Before encoding a frame, choose a QP for it */
|
|
void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
ratecontrol_entry_t *rce = NULL;
|
|
x264_zone_t *zone = get_zone( h, h->fenc->i_frame );
|
|
float q;
|
|
|
|
x264_emms();
|
|
|
|
if( h->param.rc.b_stat_read )
|
|
{
|
|
int frame = h->fenc->i_frame;
|
|
assert( frame >= 0 && frame < rc->num_entries );
|
|
rce = rc->rce = &rc->entry[frame];
|
|
|
|
if( h->sh.i_type == SLICE_TYPE_B
|
|
&& h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
|
|
{
|
|
h->sh.b_direct_spatial_mv_pred = ( rce->direct_mode == 's' );
|
|
h->mb.b_direct_auto_read = ( rce->direct_mode == 's' || rce->direct_mode == 't' );
|
|
}
|
|
}
|
|
|
|
if( rc->b_vbv )
|
|
{
|
|
memset( h->fdec->i_row_bits, 0, h->mb.i_mb_height * sizeof(int) );
|
|
memset( h->fdec->f_row_qp, 0, h->mb.i_mb_height * sizeof(float) );
|
|
memset( h->fdec->f_row_qscale, 0, h->mb.i_mb_height * sizeof(float) );
|
|
rc->row_pred = rc->row_preds[h->sh.i_type];
|
|
rc->buffer_rate = h->fenc->i_cpb_duration * rc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
|
|
update_vbv_plan( h, overhead );
|
|
|
|
const x264_level_t *l = x264_levels;
|
|
while( l->level_idc != 0 && l->level_idc != h->param.i_level_idc )
|
|
l++;
|
|
|
|
int mincr = l->mincr;
|
|
|
|
if( h->param.b_bluray_compat )
|
|
mincr = 4;
|
|
|
|
/* Profiles above High don't require minCR, so just set the maximum to a large value. */
|
|
if( h->sps->i_profile_idc > PROFILE_HIGH )
|
|
rc->frame_size_maximum = 1e9;
|
|
else
|
|
{
|
|
/* The spec has a bizarre special case for the first frame. */
|
|
if( h->i_frame == 0 )
|
|
{
|
|
//384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR
|
|
double fr = 1. / (h->param.i_level_idc >= 60 ? 300 : 172);
|
|
int pic_size_in_mbs = h->mb.i_mb_width * h->mb.i_mb_height;
|
|
rc->frame_size_maximum = 384 * BIT_DEPTH * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr;
|
|
}
|
|
else
|
|
{
|
|
//384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR
|
|
rc->frame_size_maximum = 384 * BIT_DEPTH * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( h->sh.i_type != SLICE_TYPE_B )
|
|
rc->bframes = h->fenc->i_bframes;
|
|
|
|
if( rc->b_abr )
|
|
{
|
|
q = qscale2qp( rate_estimate_qscale( h ) );
|
|
}
|
|
else if( rc->b_2pass )
|
|
{
|
|
rce->new_qscale = rate_estimate_qscale( h );
|
|
q = qscale2qp( rce->new_qscale );
|
|
}
|
|
else /* CQP */
|
|
{
|
|
if( h->sh.i_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref )
|
|
q = ( rc->qp_constant[ SLICE_TYPE_B ] + rc->qp_constant[ SLICE_TYPE_P ] ) / 2;
|
|
else
|
|
q = rc->qp_constant[ h->sh.i_type ];
|
|
|
|
if( zone )
|
|
{
|
|
if( zone->b_force_qp )
|
|
q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P];
|
|
else
|
|
q -= 6*log2f( zone->f_bitrate_factor );
|
|
}
|
|
}
|
|
if( i_force_qp != X264_QP_AUTO )
|
|
q = i_force_qp - 1;
|
|
|
|
q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
|
|
|
|
rc->qpa_rc = rc->qpa_rc_prev =
|
|
rc->qpa_aq = rc->qpa_aq_prev = 0;
|
|
h->fdec->f_qp_avg_rc =
|
|
h->fdec->f_qp_avg_aq =
|
|
rc->qpm = q;
|
|
if( rce )
|
|
rce->new_qp = q;
|
|
|
|
accum_p_qp_update( h, rc->qpm );
|
|
|
|
if( h->sh.i_type != SLICE_TYPE_B )
|
|
rc->last_non_b_pict_type = h->sh.i_type;
|
|
}
|
|
|
|
static float predict_row_size( x264_t *h, int y, float qscale )
|
|
{
|
|
/* average between two predictors:
|
|
* absolute SATD, and scaled bit cost of the colocated row in the previous frame */
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
float pred_s = predict_size( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y] );
|
|
if( h->sh.i_type == SLICE_TYPE_I || qscale >= h->fref[0][0]->f_row_qscale[y] )
|
|
{
|
|
if( h->sh.i_type == SLICE_TYPE_P
|
|
&& h->fref[0][0]->i_type == h->fdec->i_type
|
|
&& h->fref[0][0]->f_row_qscale[y] > 0
|
|
&& h->fref[0][0]->i_row_satd[y] > 0
|
|
&& (abs(h->fref[0][0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
|
|
{
|
|
float pred_t = h->fref[0][0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref[0][0]->i_row_satd[y]
|
|
* h->fref[0][0]->f_row_qscale[y] / qscale;
|
|
return (pred_s + pred_t) * 0.5f;
|
|
}
|
|
return pred_s;
|
|
}
|
|
/* Our QP is lower than the reference! */
|
|
else
|
|
{
|
|
float pred_intra = predict_size( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y] );
|
|
/* Sum: better to overestimate than underestimate by using only one of the two predictors. */
|
|
return pred_intra + pred_s;
|
|
}
|
|
}
|
|
|
|
static int row_bits_so_far( x264_t *h, int y )
|
|
{
|
|
int bits = 0;
|
|
for( int i = h->i_threadslice_start; i <= y; i++ )
|
|
bits += h->fdec->i_row_bits[i];
|
|
return bits;
|
|
}
|
|
|
|
static float predict_row_size_to_end( x264_t *h, int y, float qp )
|
|
{
|
|
float qscale = qp2qscale( qp );
|
|
float bits = 0;
|
|
for( int i = y+1; i < h->i_threadslice_end; i++ )
|
|
bits += predict_row_size( h, i, qscale );
|
|
return bits;
|
|
}
|
|
|
|
/* TODO:
|
|
* eliminate all use of qp in row ratecontrol: make it entirely qscale-based.
|
|
* make this function stop being needlessly O(N^2)
|
|
* update more often than once per row? */
|
|
int x264_ratecontrol_mb( x264_t *h, int bits )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
const int y = h->mb.i_mb_y;
|
|
|
|
h->fdec->i_row_bits[y] += bits;
|
|
rc->qpa_aq += h->mb.i_qp;
|
|
|
|
if( h->mb.i_mb_x != h->mb.i_mb_width - 1 )
|
|
return 0;
|
|
|
|
x264_emms();
|
|
rc->qpa_rc += rc->qpm * h->mb.i_mb_width;
|
|
|
|
if( !rc->b_vbv )
|
|
return 0;
|
|
|
|
float qscale = qp2qscale( rc->qpm );
|
|
h->fdec->f_row_qp[y] = rc->qpm;
|
|
h->fdec->f_row_qscale[y] = qscale;
|
|
|
|
update_predictor( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
|
|
if( h->sh.i_type != SLICE_TYPE_I && rc->qpm < h->fref[0][0]->f_row_qp[y] )
|
|
update_predictor( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
|
|
|
|
/* update ratecontrol per-mbpair in MBAFF */
|
|
if( SLICE_MBAFF && !(y&1) )
|
|
return 0;
|
|
|
|
/* FIXME: We don't currently support the case where there's a slice
|
|
* boundary in between. */
|
|
int can_reencode_row = h->sh.i_first_mb <= ((h->mb.i_mb_y - SLICE_MBAFF) * h->mb.i_mb_stride);
|
|
|
|
/* tweak quality based on difference from predicted size */
|
|
float prev_row_qp = h->fdec->f_row_qp[y];
|
|
float qp_absolute_max = h->param.rc.i_qp_max;
|
|
if( rc->rate_factor_max_increment )
|
|
qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment );
|
|
float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max );
|
|
float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
|
|
float step_size = 0.5f;
|
|
float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned;
|
|
float bits_so_far = row_bits_so_far( h, y );
|
|
rc->bits_so_far = bits_so_far;
|
|
float max_frame_error = x264_clip3f( 1.0 / h->mb.i_mb_height, 0.05, 0.25 );
|
|
float max_frame_size = rc->frame_size_maximum - rc->frame_size_maximum * max_frame_error;
|
|
max_frame_size = X264_MIN( max_frame_size, rc->buffer_fill - rc->buffer_rate * max_frame_error );
|
|
float size_of_other_slices = 0;
|
|
if( h->param.b_sliced_threads )
|
|
{
|
|
float bits_so_far_of_other_slices = 0;
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
if( h != h->thread[i] )
|
|
{
|
|
size_of_other_slices += h->thread[i]->rc->frame_size_estimated;
|
|
bits_so_far_of_other_slices += h->thread[i]->rc->bits_so_far;
|
|
}
|
|
float weight = x264_clip3f( (bits_so_far_of_other_slices + rc->frame_size_estimated) / (size_of_other_slices + rc->frame_size_estimated), 0.0, 1.0 );
|
|
float frame_size_planned = rc->frame_size_planned - rc->frame_size_planned * max_frame_error;
|
|
float size_of_other_slices_planned = X264_MIN( frame_size_planned, max_frame_size ) - rc->slice_size_planned;
|
|
size_of_other_slices_planned = X264_MAX( size_of_other_slices_planned, bits_so_far_of_other_slices );
|
|
size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned;
|
|
}
|
|
if( y < h->i_threadslice_end-1 )
|
|
{
|
|
/* B-frames shouldn't use lower QP than their reference frames. */
|
|
if( h->sh.i_type == SLICE_TYPE_B )
|
|
{
|
|
qp_min = X264_MAX( qp_min, X264_MAX( h->fref[0][0]->f_row_qp[y+1], h->fref[1][0]->f_row_qp[y+1] ) );
|
|
rc->qpm = X264_MAX( rc->qpm, qp_min );
|
|
}
|
|
|
|
float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
|
|
buffer_left_planned = X264_MAX( buffer_left_planned, 0.f );
|
|
/* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */
|
|
float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance;
|
|
float b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
|
|
float trust_coeff = x264_clip3f( bits_so_far / slice_size_planned, 0.0, 1.0 );
|
|
|
|
/* Don't increase the row QPs until a sufficient amount of the bits of the frame have been processed, in case a flat */
|
|
/* area at the top of the frame was measured inaccurately. */
|
|
if( trust_coeff < 0.05f )
|
|
qp_max = qp_absolute_max = prev_row_qp;
|
|
|
|
if( h->sh.i_type != SLICE_TYPE_I )
|
|
rc_tol *= 0.5f;
|
|
|
|
if( !rc->b_vbv_min_rate )
|
|
qp_min = X264_MAX( qp_min, rc->qp_novbv );
|
|
|
|
while( rc->qpm < qp_max
|
|
&& ((b1 > rc->frame_size_planned + rc_tol) ||
|
|
(b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv) ||
|
|
(b1 > rc->buffer_fill - buffer_left_planned * 0.5f)) )
|
|
{
|
|
rc->qpm += step_size;
|
|
b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
|
|
}
|
|
|
|
float b_max = b1 + ((rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 0.90f - b1) * trust_coeff;
|
|
rc->qpm -= step_size;
|
|
float b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
|
|
while( rc->qpm > qp_min && rc->qpm < prev_row_qp
|
|
&& (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv)
|
|
&& (b2 < max_frame_size)
|
|
&& ((b2 < rc->frame_size_planned * 0.8f) || (b2 < b_max)) )
|
|
{
|
|
b1 = b2;
|
|
rc->qpm -= step_size;
|
|
b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
|
|
}
|
|
rc->qpm += step_size;
|
|
|
|
/* avoid VBV underflow or MinCR violation */
|
|
while( rc->qpm < qp_absolute_max && (b1 > max_frame_size) )
|
|
{
|
|
rc->qpm += step_size;
|
|
b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
|
|
}
|
|
|
|
rc->frame_size_estimated = b1 - size_of_other_slices;
|
|
|
|
/* If the current row was large enough to cause a large QP jump, try re-encoding it. */
|
|
if( rc->qpm > qp_max && prev_row_qp < qp_max && can_reencode_row )
|
|
{
|
|
/* Bump QP to halfway in between... close enough. */
|
|
rc->qpm = x264_clip3f( (prev_row_qp + rc->qpm)*0.5f, prev_row_qp + 1.0f, qp_max );
|
|
rc->qpa_rc = rc->qpa_rc_prev;
|
|
rc->qpa_aq = rc->qpa_aq_prev;
|
|
h->fdec->i_row_bits[y] = 0;
|
|
h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
rc->frame_size_estimated = bits_so_far;
|
|
|
|
/* Last-ditch attempt: if the last row of the frame underflowed the VBV,
|
|
* try again. */
|
|
if( rc->qpm < qp_max && can_reencode_row
|
|
&& (bits_so_far + size_of_other_slices > X264_MIN( rc->frame_size_maximum, rc->buffer_fill )) )
|
|
{
|
|
rc->qpm = qp_max;
|
|
rc->qpa_rc = rc->qpa_rc_prev;
|
|
rc->qpa_aq = rc->qpa_aq_prev;
|
|
h->fdec->i_row_bits[y] = 0;
|
|
h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
rc->qpa_rc_prev = rc->qpa_rc;
|
|
rc->qpa_aq_prev = rc->qpa_aq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int x264_ratecontrol_qp( x264_t *h )
|
|
{
|
|
x264_emms();
|
|
return x264_clip3( h->rc->qpm + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
|
|
}
|
|
|
|
int x264_ratecontrol_mb_qp( x264_t *h )
|
|
{
|
|
x264_emms();
|
|
float qp = h->rc->qpm;
|
|
if( h->param.rc.i_aq_mode )
|
|
{
|
|
/* MB-tree currently doesn't adjust quantizers in unreferenced frames. */
|
|
float qp_offset = h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy];
|
|
/* Scale AQ's effect towards zero in emergency mode. */
|
|
if( qp > QP_MAX_SPEC )
|
|
qp_offset *= (QP_MAX - qp) / (QP_MAX - QP_MAX_SPEC);
|
|
qp += qp_offset;
|
|
}
|
|
return x264_clip3( qp + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
|
|
}
|
|
|
|
/* In 2pass, force the same frame types as in the 1st pass */
|
|
int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
if( h->param.rc.b_stat_read )
|
|
{
|
|
if( frame_num >= rc->num_entries )
|
|
{
|
|
/* We could try to initialize everything required for ABR and
|
|
* adaptive B-frames, but that would be complicated.
|
|
* So just calculate the average QP used so far. */
|
|
h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + QP_BD_OFFSET
|
|
: 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P];
|
|
rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, QP_MAX );
|
|
rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / h->param.rc.f_ip_factor ) + 0.5 ), 0, QP_MAX );
|
|
rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * h->param.rc.f_pb_factor ) + 0.5 ), 0, QP_MAX );
|
|
|
|
x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries );
|
|
x264_log( h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant );
|
|
if( h->param.i_bframe_adaptive )
|
|
x264_log( h, X264_LOG_ERROR, "disabling adaptive B-frames\n" );
|
|
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
{
|
|
h->thread[i]->rc->b_abr = 0;
|
|
h->thread[i]->rc->b_2pass = 0;
|
|
h->thread[i]->param.rc.i_rc_method = X264_RC_CQP;
|
|
h->thread[i]->param.rc.b_stat_read = 0;
|
|
h->thread[i]->param.i_bframe_adaptive = 0;
|
|
h->thread[i]->param.i_scenecut_threshold = 0;
|
|
h->thread[i]->param.rc.b_mb_tree = 0;
|
|
if( h->thread[i]->param.i_bframe > 1 )
|
|
h->thread[i]->param.i_bframe = 1;
|
|
}
|
|
return X264_TYPE_AUTO;
|
|
}
|
|
return rc->entry[frame_num].frame_type;
|
|
}
|
|
else
|
|
return X264_TYPE_AUTO;
|
|
}
|
|
|
|
void x264_ratecontrol_set_weights( x264_t *h, x264_frame_t *frm )
|
|
{
|
|
ratecontrol_entry_t *rce = &h->rc->entry[frm->i_frame];
|
|
if( h->param.analyse.i_weighted_pred <= 0 )
|
|
return;
|
|
|
|
if( rce->i_weight_denom[0] >= 0 )
|
|
SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0][0], rce->i_weight_denom[0], rce->weight[0][1] );
|
|
|
|
if( rce->i_weight_denom[1] >= 0 )
|
|
{
|
|
SET_WEIGHT( frm->weight[0][1], 1, rce->weight[1][0], rce->i_weight_denom[1], rce->weight[1][1] );
|
|
SET_WEIGHT( frm->weight[0][2], 1, rce->weight[2][0], rce->i_weight_denom[1], rce->weight[2][1] );
|
|
}
|
|
}
|
|
|
|
/* After encoding one frame, save stats and update ratecontrol state */
|
|
int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
const int *mbs = h->stat.frame.i_mb_count;
|
|
|
|
x264_emms();
|
|
|
|
h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP];
|
|
h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4] + mbs[I_PCM];
|
|
h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8];
|
|
for( int i = B_DIRECT; i <= B_8x8; i++ )
|
|
h->stat.frame.i_mb_count_p += mbs[i];
|
|
|
|
h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
|
|
h->fdec->f_qp_avg_aq = (float)rc->qpa_aq / h->mb.i_mb_count;
|
|
h->fdec->f_crf_avg = h->param.rc.f_rf_constant + h->fdec->f_qp_avg_rc - rc->qp_novbv;
|
|
|
|
if( h->param.rc.b_stat_write )
|
|
{
|
|
char c_type = h->sh.i_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i')
|
|
: h->sh.i_type==SLICE_TYPE_P ? 'P'
|
|
: h->fenc->b_kept_as_ref ? 'B' : 'b';
|
|
int dir_frame = h->stat.frame.i_direct_score[1] - h->stat.frame.i_direct_score[0];
|
|
int dir_avg = h->stat.i_direct_score[1] - h->stat.i_direct_score[0];
|
|
char c_direct = h->mb.b_direct_auto_write ?
|
|
( dir_frame>0 ? 's' : dir_frame<0 ? 't' :
|
|
dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
|
|
: '-';
|
|
if( fprintf( rc->p_stat_file_out,
|
|
"in:%d out:%d type:%c dur:%"PRId64" cpbdur:%"PRId64" q:%.2f aq:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
|
|
h->fenc->i_frame, h->i_frame,
|
|
c_type, h->fenc->i_duration,
|
|
h->fenc->i_cpb_duration,
|
|
rc->qpa_rc, h->fdec->f_qp_avg_aq,
|
|
h->stat.frame.i_tex_bits,
|
|
h->stat.frame.i_mv_bits,
|
|
h->stat.frame.i_misc_bits,
|
|
h->stat.frame.i_mb_count_i,
|
|
h->stat.frame.i_mb_count_p,
|
|
h->stat.frame.i_mb_count_skip,
|
|
c_direct) < 0 )
|
|
goto fail;
|
|
|
|
/* Only write information for reference reordering once. */
|
|
int use_old_stats = h->param.rc.b_stat_read && rc->rce->refs > 1;
|
|
for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref[0]); i++ )
|
|
{
|
|
int refcount = use_old_stats ? rc->rce->refcount[i]
|
|
: PARAM_INTERLACED ? h->stat.frame.i_mb_count_ref[0][i*2]
|
|
+ h->stat.frame.i_mb_count_ref[0][i*2+1]
|
|
: h->stat.frame.i_mb_count_ref[0][i];
|
|
if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 )
|
|
goto fail;
|
|
}
|
|
|
|
if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->sh.weight[0][0].weightfn )
|
|
{
|
|
if( fprintf( rc->p_stat_file_out, "w:%d,%d,%d",
|
|
h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 )
|
|
goto fail;
|
|
if( h->sh.weight[0][1].weightfn || h->sh.weight[0][2].weightfn )
|
|
{
|
|
if( fprintf( rc->p_stat_file_out, ",%d,%d,%d,%d,%d ",
|
|
h->sh.weight[0][1].i_denom, h->sh.weight[0][1].i_scale, h->sh.weight[0][1].i_offset,
|
|
h->sh.weight[0][2].i_scale, h->sh.weight[0][2].i_offset ) < 0 )
|
|
goto fail;
|
|
}
|
|
else if( fprintf( rc->p_stat_file_out, " " ) < 0 )
|
|
goto fail;
|
|
}
|
|
|
|
if( fprintf( rc->p_stat_file_out, ";\n") < 0 )
|
|
goto fail;
|
|
|
|
/* Don't re-write the data in multi-pass mode. */
|
|
if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read )
|
|
{
|
|
uint8_t i_type = h->sh.i_type;
|
|
h->mc.mbtree_fix8_pack( rc->mbtree.qp_buffer[0], h->fenc->f_qp_offset, h->mb.i_mb_count );
|
|
if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 )
|
|
goto fail;
|
|
if( fwrite( rc->mbtree.qp_buffer[0], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < (unsigned)h->mb.i_mb_count )
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if( rc->b_abr )
|
|
{
|
|
if( h->sh.i_type != SLICE_TYPE_B )
|
|
rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / rc->last_rceq;
|
|
else
|
|
{
|
|
/* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
|
|
* Not perfectly accurate with B-refs, but good enough. */
|
|
rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / (rc->last_rceq * h->param.rc.f_pb_factor);
|
|
}
|
|
rc->cplxr_sum *= rc->cbr_decay;
|
|
rc->wanted_bits_window += h->fenc->f_duration * rc->bitrate;
|
|
rc->wanted_bits_window *= rc->cbr_decay;
|
|
}
|
|
|
|
if( rc->b_2pass )
|
|
rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale( rc->rce->new_qp ) );
|
|
|
|
if( h->mb.b_variable_qp )
|
|
{
|
|
if( h->sh.i_type == SLICE_TYPE_B )
|
|
{
|
|
rc->bframe_bits += bits;
|
|
if( h->fenc->b_last_minigop_bframe )
|
|
{
|
|
update_predictor( rc->pred_b_from_p, qp2qscale( rc->qpa_rc ),
|
|
h->fref[1][h->i_ref[1]-1]->i_satd, rc->bframe_bits / rc->bframes );
|
|
rc->bframe_bits = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
*filler = update_vbv( h, bits );
|
|
rc->filler_bits_sum += *filler * 8;
|
|
|
|
if( h->sps->vui.b_nal_hrd_parameters_present )
|
|
{
|
|
if( h->fenc->i_frame == 0 )
|
|
{
|
|
// access unit initialises the HRD
|
|
h->fenc->hrd_timing.cpb_initial_arrival_time = 0;
|
|
rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
|
|
rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
|
|
h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit = (double)rc->initial_cpb_removal_delay / 90000;
|
|
}
|
|
else
|
|
{
|
|
h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)(h->fenc->i_cpb_delay - h->i_cpb_delay_pir_offset) *
|
|
h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
|
|
|
|
if( h->fenc->b_keyframe )
|
|
{
|
|
rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time;
|
|
rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
|
|
rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
|
|
}
|
|
|
|
double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000;
|
|
if( !h->fenc->b_keyframe )
|
|
cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000;
|
|
|
|
if( h->sps->vui.hrd.b_cbr_hrd )
|
|
h->fenc->hrd_timing.cpb_initial_arrival_time = rc->previous_cpb_final_arrival_time;
|
|
else
|
|
h->fenc->hrd_timing.cpb_initial_arrival_time = X264_MAX( rc->previous_cpb_final_arrival_time, cpb_earliest_arrival_time );
|
|
}
|
|
int filler_bits = *filler ? X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), *filler )*8 : 0;
|
|
// Equation C-6
|
|
h->fenc->hrd_timing.cpb_final_arrival_time = rc->previous_cpb_final_arrival_time = h->fenc->hrd_timing.cpb_initial_arrival_time +
|
|
(double)(bits + filler_bits) / h->sps->vui.hrd.i_bit_rate_unscaled;
|
|
|
|
h->fenc->hrd_timing.dpb_output_time = (double)h->fenc->i_dpb_output_delay * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale +
|
|
h->fenc->hrd_timing.cpb_removal_time;
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
x264_log( h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n" );
|
|
return -1;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* 2 pass functions
|
|
***************************************************************************/
|
|
|
|
/**
|
|
* modify the bitrate curve from pass1 for one frame
|
|
*/
|
|
static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num)
|
|
{
|
|
x264_ratecontrol_t *rcc= h->rc;
|
|
x264_zone_t *zone = get_zone( h, frame_num );
|
|
double q;
|
|
if( h->param.rc.b_mb_tree )
|
|
{
|
|
double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
|
|
q = pow( BASE_FRAME_DURATION / CLIP_DURATION(rce->i_duration * timescale), 1 - h->param.rc.f_qcompress );
|
|
}
|
|
else
|
|
q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
|
|
|
|
// avoid NaN's in the rc_eq
|
|
if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 )
|
|
q = rcc->last_qscale_for[rce->pict_type];
|
|
else
|
|
{
|
|
rcc->last_rceq = q;
|
|
q /= rate_factor;
|
|
rcc->last_qscale = q;
|
|
}
|
|
|
|
if( zone )
|
|
{
|
|
if( zone->b_force_qp )
|
|
q = qp2qscale( zone->i_qp );
|
|
else
|
|
q /= zone->f_bitrate_factor;
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q, int frame_num)
|
|
{
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
const int pict_type = rce->pict_type;
|
|
x264_zone_t *zone = get_zone( h, frame_num );
|
|
|
|
// force I/B quants as a function of P quants
|
|
if( pict_type == SLICE_TYPE_I )
|
|
{
|
|
double iq = q;
|
|
double pq = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
|
|
double ip_factor = h->param.rc.f_ip_factor;
|
|
/* don't apply ip_factor if the following frame is also I */
|
|
if( rcc->accum_p_norm <= 0 )
|
|
q = iq;
|
|
else if( rcc->accum_p_norm >= 1 )
|
|
q = pq / ip_factor;
|
|
else
|
|
q = rcc->accum_p_norm * pq / ip_factor + (1 - rcc->accum_p_norm) * iq;
|
|
}
|
|
else if( pict_type == SLICE_TYPE_B )
|
|
{
|
|
q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
|
|
if( !rce->kept_as_ref )
|
|
q *= h->param.rc.f_pb_factor;
|
|
}
|
|
else if( pict_type == SLICE_TYPE_P
|
|
&& rcc->last_non_b_pict_type == SLICE_TYPE_P
|
|
&& rce->tex_bits == 0 )
|
|
{
|
|
q = rcc->last_qscale_for[SLICE_TYPE_P];
|
|
}
|
|
|
|
/* last qscale / qdiff stuff */
|
|
if( rcc->last_non_b_pict_type == pict_type &&
|
|
(pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1) )
|
|
{
|
|
double last_q = rcc->last_qscale_for[pict_type];
|
|
double max_qscale = last_q * rcc->lstep;
|
|
double min_qscale = last_q / rcc->lstep;
|
|
|
|
if ( q > max_qscale ) q = max_qscale;
|
|
else if( q < min_qscale ) q = min_qscale;
|
|
}
|
|
|
|
rcc->last_qscale_for[pict_type] = q;
|
|
if( pict_type != SLICE_TYPE_B )
|
|
rcc->last_non_b_pict_type = pict_type;
|
|
if( pict_type == SLICE_TYPE_I )
|
|
{
|
|
rcc->last_accum_p_norm = rcc->accum_p_norm;
|
|
rcc->accum_p_norm = 0;
|
|
rcc->accum_p_qp = 0;
|
|
}
|
|
if( pict_type == SLICE_TYPE_P )
|
|
{
|
|
float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 );
|
|
rcc->accum_p_qp = mask * (qscale2qp( q ) + rcc->accum_p_qp);
|
|
rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm);
|
|
}
|
|
|
|
if( zone )
|
|
{
|
|
if( zone->b_force_qp )
|
|
q = qp2qscale( zone->i_qp );
|
|
else
|
|
q /= zone->f_bitrate_factor;
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
static float predict_size( predictor_t *p, float q, float var )
|
|
{
|
|
return (p->coeff*var + p->offset) / (q*p->count);
|
|
}
|
|
|
|
static void update_predictor( predictor_t *p, float q, float var, float bits )
|
|
{
|
|
float range = 1.5;
|
|
if( var < 10 )
|
|
return;
|
|
float old_coeff = p->coeff / p->count;
|
|
float old_offset = p->offset / p->count;
|
|
float new_coeff = X264_MAX( (bits*q - old_offset) / var, p->coeff_min );
|
|
float new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
|
|
float new_offset = bits*q - new_coeff_clipped * var;
|
|
if( new_offset >= 0 )
|
|
new_coeff = new_coeff_clipped;
|
|
else
|
|
new_offset = 0;
|
|
p->count *= p->decay;
|
|
p->coeff *= p->decay;
|
|
p->offset *= p->decay;
|
|
p->count ++;
|
|
p->coeff += new_coeff;
|
|
p->offset += new_offset;
|
|
}
|
|
|
|
// update VBV after encoding a frame
|
|
static int update_vbv( x264_t *h, int bits )
|
|
{
|
|
int filler = 0;
|
|
int bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
x264_ratecontrol_t *rct = h->thread[0]->rc;
|
|
int64_t buffer_size = (int64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
|
|
|
|
if( rcc->last_satd >= h->mb.i_mb_count )
|
|
update_predictor( &rct->pred[h->sh.i_type], qp2qscale( rcc->qpa_rc ), rcc->last_satd, bits );
|
|
|
|
if( !rcc->b_vbv )
|
|
return filler;
|
|
|
|
uint64_t buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale;
|
|
rct->buffer_fill_final -= buffer_diff;
|
|
rct->buffer_fill_final_min -= buffer_diff;
|
|
|
|
if( rct->buffer_fill_final_min < 0 )
|
|
{
|
|
double underflow = (double)rct->buffer_fill_final_min / h->sps->vui.i_time_scale;
|
|
if( rcc->rate_factor_max_increment && rcc->qpm >= rcc->qp_novbv + rcc->rate_factor_max_increment )
|
|
x264_log( h, X264_LOG_DEBUG, "VBV underflow due to CRF-max (frame %d, %.0f bits)\n", h->i_frame, underflow );
|
|
else
|
|
x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, underflow );
|
|
rct->buffer_fill_final =
|
|
rct->buffer_fill_final_min = 0;
|
|
}
|
|
|
|
if( h->param.i_avcintra_class )
|
|
buffer_diff = buffer_size;
|
|
else
|
|
buffer_diff = (uint64_t)bitrate * h->sps->vui.i_num_units_in_tick * h->fenc->i_cpb_duration;
|
|
rct->buffer_fill_final += buffer_diff;
|
|
rct->buffer_fill_final_min += buffer_diff;
|
|
|
|
if( rct->buffer_fill_final > buffer_size )
|
|
{
|
|
if( h->param.rc.b_filler )
|
|
{
|
|
int64_t scale = (int64_t)h->sps->vui.i_time_scale * 8;
|
|
filler = (rct->buffer_fill_final - buffer_size + scale - 1) / scale;
|
|
bits = h->param.i_avcintra_class ? filler * 8 : X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8;
|
|
buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale;
|
|
rct->buffer_fill_final -= buffer_diff;
|
|
rct->buffer_fill_final_min -= buffer_diff;
|
|
}
|
|
else
|
|
{
|
|
rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, buffer_size );
|
|
rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, buffer_size );
|
|
}
|
|
}
|
|
|
|
return filler;
|
|
}
|
|
|
|
void x264_hrd_fullness( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rct = h->thread[0]->rc;
|
|
uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale / rct->hrd_multiply_denom;
|
|
uint64_t cpb_state = rct->buffer_fill_final;
|
|
uint64_t cpb_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
|
|
uint64_t multiply_factor = 90000 / rct->hrd_multiply_denom;
|
|
|
|
if( rct->buffer_fill_final < 0 || rct->buffer_fill_final > (int64_t)cpb_size )
|
|
{
|
|
x264_log( h, X264_LOG_WARNING, "CPB %s: %.0f bits in a %.0f-bit buffer\n",
|
|
rct->buffer_fill_final < 0 ? "underflow" : "overflow",
|
|
(double)rct->buffer_fill_final / h->sps->vui.i_time_scale, (double)cpb_size / h->sps->vui.i_time_scale );
|
|
}
|
|
|
|
h->initial_cpb_removal_delay = (multiply_factor * cpb_state) / denom;
|
|
h->initial_cpb_removal_delay_offset = (multiply_factor * cpb_size) / denom - h->initial_cpb_removal_delay;
|
|
|
|
int64_t decoder_buffer_fill = h->initial_cpb_removal_delay * denom / multiply_factor;
|
|
rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, decoder_buffer_fill );
|
|
}
|
|
|
|
// provisionally update VBV according to the planned size of all frames currently in progress
|
|
static void update_vbv_plan( x264_t *h, int overhead )
|
|
{
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final_min / h->sps->vui.i_time_scale;
|
|
if( h->i_thread_frames > 1 )
|
|
{
|
|
int j = rcc - h->thread[0]->rc;
|
|
for( int i = 1; i < h->i_thread_frames; i++ )
|
|
{
|
|
x264_t *t = h->thread[ (j+i)%h->i_thread_frames ];
|
|
double bits = t->rc->frame_size_planned;
|
|
if( !t->b_thread_active )
|
|
continue;
|
|
bits = X264_MAX(bits, t->rc->frame_size_estimated);
|
|
rcc->buffer_fill -= bits;
|
|
rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 );
|
|
rcc->buffer_fill += t->rc->buffer_rate;
|
|
rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
|
|
}
|
|
}
|
|
rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
|
|
rcc->buffer_fill -= overhead;
|
|
}
|
|
|
|
// clip qscale to between lmin and lmax
|
|
static double clip_qscale( x264_t *h, int pict_type, double q )
|
|
{
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
double lmin = rcc->lmin[pict_type];
|
|
double lmax = rcc->lmax[pict_type];
|
|
if( rcc->rate_factor_max_increment )
|
|
lmax = X264_MIN( lmax, qp2qscale( rcc->qp_novbv + rcc->rate_factor_max_increment ) );
|
|
|
|
if( lmin==lmax )
|
|
return lmin;
|
|
else if( rcc->b_2pass )
|
|
{
|
|
double min2 = log( lmin );
|
|
double max2 = log( lmax );
|
|
q = (log(q) - min2)/(max2-min2) - 0.5;
|
|
q = 1.0/(1.0 + exp( -4*q ));
|
|
q = q*(max2-min2) + min2;
|
|
return exp( q );
|
|
}
|
|
else
|
|
return x264_clip3f( q, lmin, lmax );
|
|
}
|
|
|
|
// apply VBV constraints
|
|
static double vbv_pass1( x264_t *h, int pict_type, double q )
|
|
{
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
/* B-frames are not directly subject to VBV,
|
|
* since they are controlled by the P-frames' QPs. */
|
|
|
|
if( rcc->b_vbv && rcc->last_satd > 0 )
|
|
{
|
|
double q0 = q;
|
|
double fenc_cpb_duration = (double)h->fenc->i_cpb_duration *
|
|
h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
|
|
/* Lookahead VBV: raise the quantizer as necessary such that no frames in
|
|
* the lookahead overflow and such that the buffer is in a reasonable state
|
|
* by the end of the lookahead. */
|
|
if( h->param.rc.i_lookahead )
|
|
{
|
|
int terminate = 0;
|
|
|
|
/* Avoid an infinite loop. */
|
|
for( int iterations = 0; iterations < 1000 && terminate != 3; iterations++ )
|
|
{
|
|
double frame_q[3];
|
|
double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
|
|
double buffer_fill_cur = rcc->buffer_fill - cur_bits;
|
|
double target_fill;
|
|
double total_duration = 0;
|
|
double last_duration = fenc_cpb_duration;
|
|
frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q;
|
|
frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor;
|
|
frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor;
|
|
|
|
/* Loop over the planned future frames. */
|
|
for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ )
|
|
{
|
|
total_duration += last_duration;
|
|
buffer_fill_cur += rcc->vbv_max_rate * last_duration;
|
|
int i_type = h->fenc->i_planned_type[j];
|
|
int i_satd = h->fenc->i_planned_satd[j];
|
|
if( i_type == X264_TYPE_AUTO )
|
|
break;
|
|
i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P;
|
|
cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd );
|
|
buffer_fill_cur -= cur_bits;
|
|
last_duration = h->fenc->f_planned_cpb_duration[j];
|
|
}
|
|
/* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */
|
|
target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 );
|
|
if( buffer_fill_cur < target_fill )
|
|
{
|
|
q *= 1.01;
|
|
terminate |= 1;
|
|
continue;
|
|
}
|
|
/* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */
|
|
target_fill = x264_clip3f( rcc->buffer_fill - total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size );
|
|
if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill )
|
|
{
|
|
q /= 1.01;
|
|
terminate |= 2;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/* Fallback to old purely-reactive algorithm: no lookahead. */
|
|
else
|
|
{
|
|
if( ( pict_type == SLICE_TYPE_P ||
|
|
( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) &&
|
|
rcc->buffer_fill/rcc->buffer_size < 0.5 )
|
|
{
|
|
q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
|
|
}
|
|
|
|
/* Now a hard threshold to make sure the frame fits in VBV.
|
|
* This one is mostly for I-frames. */
|
|
double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
|
|
/* For small VBVs, allow the frame to use up the entire VBV. */
|
|
double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1;
|
|
/* For single-frame VBVs, request that the frame use up the entire VBV. */
|
|
double min_fill_factor = rcc->single_frame_vbv ? 1 : 2;
|
|
|
|
if( bits > rcc->buffer_fill/max_fill_factor )
|
|
{
|
|
double qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 );
|
|
q /= qf;
|
|
bits *= qf;
|
|
}
|
|
if( bits < rcc->buffer_rate/min_fill_factor )
|
|
{
|
|
double qf = x264_clip3f( bits*min_fill_factor/rcc->buffer_rate, 0.001, 1.0 );
|
|
q *= qf;
|
|
}
|
|
q = X264_MAX( q0, q );
|
|
}
|
|
|
|
/* Check B-frame complexity, and use up any bits that would
|
|
* overflow before the next P-frame. */
|
|
if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv )
|
|
{
|
|
int nb = rcc->bframes;
|
|
double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
|
|
double pbbits = bits;
|
|
double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
|
|
double space;
|
|
double bframe_cpb_duration = 0;
|
|
double minigop_cpb_duration;
|
|
for( int i = 0; i < nb; i++ )
|
|
bframe_cpb_duration += h->fenc->f_planned_cpb_duration[i];
|
|
|
|
if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate )
|
|
{
|
|
nb = 0;
|
|
bframe_cpb_duration = 0;
|
|
}
|
|
pbbits += nb * bbits;
|
|
|
|
minigop_cpb_duration = bframe_cpb_duration + fenc_cpb_duration;
|
|
space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size;
|
|
if( pbbits < space )
|
|
{
|
|
q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) );
|
|
}
|
|
q = X264_MAX( q0/2, q );
|
|
}
|
|
|
|
if( !rcc->b_vbv_min_rate )
|
|
q = X264_MAX( q0, q );
|
|
}
|
|
|
|
return clip_qscale( h, pict_type, q );
|
|
}
|
|
|
|
// update qscale for 1 frame based on actual bits used so far
|
|
static float rate_estimate_qscale( x264_t *h )
|
|
{
|
|
float q;
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
ratecontrol_entry_t rce = {0};
|
|
int pict_type = h->sh.i_type;
|
|
int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I]
|
|
+ h->stat.i_frame_size[SLICE_TYPE_P]
|
|
+ h->stat.i_frame_size[SLICE_TYPE_B])
|
|
- rcc->filler_bits_sum;
|
|
|
|
if( rcc->b_2pass )
|
|
{
|
|
rce = *rcc->rce;
|
|
if( pict_type != rce.pict_type )
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n",
|
|
slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type] );
|
|
}
|
|
}
|
|
|
|
if( pict_type == SLICE_TYPE_B )
|
|
{
|
|
/* B-frames don't have independent ratecontrol, but rather get the
|
|
* average QP of the two adjacent P-frames + an offset */
|
|
|
|
int i0 = IS_X264_TYPE_I(h->fref_nearest[0]->i_type);
|
|
int i1 = IS_X264_TYPE_I(h->fref_nearest[1]->i_type);
|
|
int dt0 = abs(h->fenc->i_poc - h->fref_nearest[0]->i_poc);
|
|
int dt1 = abs(h->fenc->i_poc - h->fref_nearest[1]->i_poc);
|
|
float q0 = h->fref_nearest[0]->f_qp_avg_rc;
|
|
float q1 = h->fref_nearest[1]->f_qp_avg_rc;
|
|
|
|
if( h->fref_nearest[0]->i_type == X264_TYPE_BREF )
|
|
q0 -= rcc->pb_offset/2;
|
|
if( h->fref_nearest[1]->i_type == X264_TYPE_BREF )
|
|
q1 -= rcc->pb_offset/2;
|
|
|
|
if( i0 && i1 )
|
|
q = (q0 + q1) / 2 + rcc->ip_offset;
|
|
else if( i0 )
|
|
q = q1;
|
|
else if( i1 )
|
|
q = q0;
|
|
else
|
|
q = (q0*dt1 + q1*dt0) / (dt0 + dt1);
|
|
|
|
if( h->fenc->b_kept_as_ref )
|
|
q += rcc->pb_offset/2;
|
|
else
|
|
q += rcc->pb_offset;
|
|
|
|
rcc->qp_novbv = q;
|
|
q = qp2qscale( q );
|
|
if( rcc->b_2pass )
|
|
rcc->frame_size_planned = qscale2bits( &rce, q );
|
|
else
|
|
rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref[1][h->i_ref[1]-1]->i_satd );
|
|
|
|
/* Apply MinCR and buffer fill restrictions */
|
|
if( rcc->b_vbv )
|
|
{
|
|
double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) );
|
|
if( rcc->frame_size_planned > frame_size_maximum )
|
|
{
|
|
q *= rcc->frame_size_planned / frame_size_maximum;
|
|
rcc->frame_size_planned = frame_size_maximum;
|
|
}
|
|
}
|
|
|
|
rcc->frame_size_estimated = rcc->frame_size_planned;
|
|
|
|
/* For row SATDs */
|
|
if( rcc->b_vbv )
|
|
rcc->last_satd = x264_rc_analyse_slice( h );
|
|
return q;
|
|
}
|
|
else
|
|
{
|
|
double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate;
|
|
double predicted_bits = total_bits;
|
|
if( h->i_thread_frames > 1 )
|
|
{
|
|
int j = rcc - h->thread[0]->rc;
|
|
for( int i = 1; i < h->i_thread_frames; i++ )
|
|
{
|
|
x264_t *t = h->thread[(j+i) % h->i_thread_frames];
|
|
double bits = t->rc->frame_size_planned;
|
|
if( !t->b_thread_active )
|
|
continue;
|
|
bits = X264_MAX(bits, t->rc->frame_size_estimated);
|
|
predicted_bits += bits;
|
|
}
|
|
}
|
|
|
|
if( rcc->b_2pass )
|
|
{
|
|
double lmin = rcc->lmin[pict_type];
|
|
double lmax = rcc->lmax[pict_type];
|
|
double diff;
|
|
|
|
/* Adjust ABR buffer based on distance to the end of the video. */
|
|
if( rcc->num_entries > h->i_frame )
|
|
{
|
|
double final_bits = rcc->entry_out[rcc->num_entries-1]->expected_bits;
|
|
double video_pos = rce.expected_bits / final_bits;
|
|
double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries );
|
|
abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 );
|
|
}
|
|
|
|
diff = predicted_bits - rce.expected_bits;
|
|
q = rce.new_qscale;
|
|
q /= x264_clip3f((abr_buffer - diff) / abr_buffer, .5, 2);
|
|
if( h->i_frame >= rcc->fps && rcc->expected_bits_sum >= 1 )
|
|
{
|
|
/* Adjust quant based on the difference between
|
|
* achieved and expected bitrate so far */
|
|
double cur_time = (double)h->i_frame / rcc->num_entries;
|
|
double w = x264_clip3f( cur_time*100, 0.0, 1.0 );
|
|
q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
|
|
}
|
|
rcc->qp_novbv = qscale2qp( q );
|
|
if( rcc->b_vbv )
|
|
{
|
|
/* Do not overflow vbv */
|
|
double expected_size = qscale2bits( &rce, q );
|
|
double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
|
|
double expected_fullness = rce.expected_vbv / rcc->buffer_size;
|
|
double qmax = q*(2 - expected_fullness);
|
|
double size_constraint = 1 + expected_fullness;
|
|
qmax = X264_MAX( qmax, rce.new_qscale );
|
|
if( expected_fullness < .05 )
|
|
qmax = lmax;
|
|
qmax = X264_MIN(qmax, lmax);
|
|
while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) ||
|
|
((expected_vbv < 0) && (q < lmax)))
|
|
{
|
|
q *= 1.05;
|
|
expected_size = qscale2bits(&rce, q);
|
|
expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
|
|
}
|
|
rcc->last_satd = x264_rc_analyse_slice( h );
|
|
}
|
|
q = x264_clip3f( q, lmin, lmax );
|
|
}
|
|
else /* 1pass ABR */
|
|
{
|
|
/* Calculate the quantizer which would have produced the desired
|
|
* average bitrate if it had been applied to all frames so far.
|
|
* Then modulate that quant based on the current frame's complexity
|
|
* relative to the average complexity so far (using the 2pass RCEQ).
|
|
* Then bias the quant up or down if total size so far was far from
|
|
* the target.
|
|
* Result: Depending on the value of rate_tolerance, there is a
|
|
* tradeoff between quality and bitrate precision. But at large
|
|
* tolerances, the bit distribution approaches that of 2pass. */
|
|
|
|
double wanted_bits, overflow = 1;
|
|
|
|
rcc->last_satd = x264_rc_analyse_slice( h );
|
|
rcc->short_term_cplxsum *= 0.5;
|
|
rcc->short_term_cplxcount *= 0.5;
|
|
rcc->short_term_cplxsum += rcc->last_satd / (CLIP_DURATION(h->fenc->f_duration) / BASE_FRAME_DURATION);
|
|
rcc->short_term_cplxcount ++;
|
|
|
|
rce.tex_bits = rcc->last_satd;
|
|
rce.blurred_complexity = rcc->short_term_cplxsum / rcc->short_term_cplxcount;
|
|
rce.mv_bits = 0;
|
|
rce.p_count = rcc->nmb;
|
|
rce.i_count = 0;
|
|
rce.s_count = 0;
|
|
rce.qscale = 1;
|
|
rce.pict_type = pict_type;
|
|
rce.i_duration = h->fenc->i_duration;
|
|
|
|
if( h->param.rc.i_rc_method == X264_RC_CRF )
|
|
{
|
|
q = get_qscale( h, &rce, rcc->rate_factor_constant, h->fenc->i_frame );
|
|
}
|
|
else
|
|
{
|
|
q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame );
|
|
|
|
/* ABR code can potentially be counterproductive in CBR, so just don't bother.
|
|
* Don't run it if the frame complexity is zero either. */
|
|
if( !rcc->b_vbv_min_rate && rcc->last_satd )
|
|
{
|
|
// FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
|
|
int i_frame_done = h->i_frame;
|
|
double time_done = i_frame_done / rcc->fps;
|
|
if( h->param.b_vfr_input && i_frame_done > 0 )
|
|
time_done = ((double)(h->fenc->i_reordered_pts - h->i_reordered_pts_delay)) * h->param.i_timebase_num / h->param.i_timebase_den;
|
|
wanted_bits = time_done * rcc->bitrate;
|
|
if( wanted_bits > 0 )
|
|
{
|
|
abr_buffer *= X264_MAX( 1, sqrt( time_done ) );
|
|
overflow = x264_clip3f( 1.0 + (predicted_bits - wanted_bits) / abr_buffer, .5, 2 );
|
|
q *= overflow;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( pict_type == SLICE_TYPE_I && h->param.i_keyint_max > 1
|
|
/* should test _next_ pict type, but that isn't decided yet */
|
|
&& rcc->last_non_b_pict_type != SLICE_TYPE_I )
|
|
{
|
|
q = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
|
|
q /= h->param.rc.f_ip_factor;
|
|
}
|
|
else if( h->i_frame > 0 )
|
|
{
|
|
if( h->param.rc.i_rc_method != X264_RC_CRF )
|
|
{
|
|
/* Asymmetric clipping, because symmetric would prevent
|
|
* overflow control in areas of rapidly oscillating complexity */
|
|
double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
|
|
double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
|
|
if( overflow > 1.1 && h->i_frame > 3 )
|
|
lmax *= rcc->lstep;
|
|
else if( overflow < 0.9 )
|
|
lmin /= rcc->lstep;
|
|
|
|
q = x264_clip3f(q, lmin, lmax);
|
|
}
|
|
}
|
|
else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 )
|
|
{
|
|
q = qp2qscale( ABR_INIT_QP ) / h->param.rc.f_ip_factor;
|
|
}
|
|
rcc->qp_novbv = qscale2qp( q );
|
|
|
|
q = vbv_pass1( h, pict_type, q );
|
|
}
|
|
|
|
rcc->last_qscale_for[pict_type] =
|
|
rcc->last_qscale = q;
|
|
|
|
if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 )
|
|
rcc->last_qscale_for[SLICE_TYPE_P] = q * h->param.rc.f_ip_factor;
|
|
|
|
if( rcc->b_2pass )
|
|
rcc->frame_size_planned = qscale2bits( &rce, q );
|
|
else
|
|
rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
|
|
|
|
/* Apply MinCR and buffer fill restrictions */
|
|
if( rcc->b_vbv )
|
|
{
|
|
double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) );
|
|
if( rcc->frame_size_planned > frame_size_maximum )
|
|
{
|
|
q *= rcc->frame_size_planned / frame_size_maximum;
|
|
rcc->frame_size_planned = frame_size_maximum;
|
|
}
|
|
|
|
/* Always use up the whole VBV in this case. */
|
|
if( rcc->single_frame_vbv )
|
|
rcc->frame_size_planned = X264_MIN( rcc->buffer_rate, frame_size_maximum );
|
|
}
|
|
|
|
rcc->frame_size_estimated = rcc->frame_size_planned;
|
|
return q;
|
|
}
|
|
}
|
|
|
|
static void threads_normalize_predictors( x264_t *h )
|
|
{
|
|
double totalsize = 0;
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
totalsize += h->thread[i]->rc->slice_size_planned;
|
|
double factor = h->rc->frame_size_planned / totalsize;
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
h->thread[i]->rc->slice_size_planned *= factor;
|
|
}
|
|
|
|
void x264_threads_distribute_ratecontrol( x264_t *h )
|
|
{
|
|
int row;
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
x264_emms();
|
|
float qscale = qp2qscale( rc->qpm );
|
|
|
|
/* Initialize row predictors */
|
|
if( h->i_frame == 0 )
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
{
|
|
x264_t *t = h->thread[i];
|
|
if( t != h )
|
|
memcpy( t->rc->row_preds, rc->row_preds, sizeof(rc->row_preds) );
|
|
}
|
|
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
{
|
|
x264_t *t = h->thread[i];
|
|
if( t != h )
|
|
memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) );
|
|
t->rc->row_pred = t->rc->row_preds[h->sh.i_type];
|
|
/* Calculate the planned slice size. */
|
|
if( rc->b_vbv && rc->frame_size_planned )
|
|
{
|
|
int size = 0;
|
|
for( row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
|
|
size += h->fdec->i_row_satd[row];
|
|
t->rc->slice_size_planned = predict_size( &rc->pred[h->sh.i_type + (i+1)*5], qscale, size );
|
|
}
|
|
else
|
|
t->rc->slice_size_planned = 0;
|
|
}
|
|
if( rc->b_vbv && rc->frame_size_planned )
|
|
{
|
|
threads_normalize_predictors( h );
|
|
|
|
if( rc->single_frame_vbv )
|
|
{
|
|
/* Compensate for our max frame error threshold: give more bits (proportionally) to smaller slices. */
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
{
|
|
x264_t *t = h->thread[i];
|
|
float max_frame_error = x264_clip3f( 1.0 / (t->i_threadslice_end - t->i_threadslice_start), 0.05, 0.25 );
|
|
t->rc->slice_size_planned += 2 * max_frame_error * rc->frame_size_planned;
|
|
}
|
|
threads_normalize_predictors( h );
|
|
}
|
|
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
h->thread[i]->rc->frame_size_estimated = h->thread[i]->rc->slice_size_planned;
|
|
}
|
|
}
|
|
|
|
void x264_threads_merge_ratecontrol( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rc = h->rc;
|
|
x264_emms();
|
|
|
|
for( int i = 0; i < h->param.i_threads; i++ )
|
|
{
|
|
x264_t *t = h->thread[i];
|
|
x264_ratecontrol_t *rct = h->thread[i]->rc;
|
|
if( h->param.rc.i_vbv_buffer_size )
|
|
{
|
|
int size = 0;
|
|
for( int row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
|
|
size += h->fdec->i_row_satd[row];
|
|
int bits = t->stat.frame.i_mv_bits + t->stat.frame.i_tex_bits + t->stat.frame.i_misc_bits;
|
|
int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->mb.i_mb_width;
|
|
update_predictor( &rc->pred[h->sh.i_type+(i+1)*5], qp2qscale( rct->qpa_rc/mb_count ), size, bits );
|
|
}
|
|
if( !i )
|
|
continue;
|
|
rc->qpa_rc += rct->qpa_rc;
|
|
rc->qpa_aq += rct->qpa_aq;
|
|
}
|
|
}
|
|
|
|
void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
|
|
{
|
|
if( cur != prev )
|
|
{
|
|
#define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var))
|
|
/* these vars are updated in x264_ratecontrol_start()
|
|
* so copy them from the context that most recently started (prev)
|
|
* to the context that's about to start (cur). */
|
|
COPY(accum_p_qp);
|
|
COPY(accum_p_norm);
|
|
COPY(last_satd);
|
|
COPY(last_rceq);
|
|
COPY(last_qscale_for);
|
|
COPY(last_non_b_pict_type);
|
|
COPY(short_term_cplxsum);
|
|
COPY(short_term_cplxcount);
|
|
COPY(bframes);
|
|
COPY(prev_zone);
|
|
COPY(mbtree.qpbuf_pos);
|
|
/* these vars can be updated by x264_ratecontrol_init_reconfigurable */
|
|
COPY(bitrate);
|
|
COPY(buffer_size);
|
|
COPY(buffer_rate);
|
|
COPY(vbv_max_rate);
|
|
COPY(single_frame_vbv);
|
|
COPY(cbr_decay);
|
|
COPY(rate_factor_constant);
|
|
COPY(rate_factor_max_increment);
|
|
#undef COPY
|
|
}
|
|
if( cur != next )
|
|
{
|
|
#define COPY(var) next->rc->var = cur->rc->var
|
|
/* these vars are updated in x264_ratecontrol_end()
|
|
* so copy them from the context that most recently ended (cur)
|
|
* to the context that's about to end (next) */
|
|
COPY(cplxr_sum);
|
|
COPY(expected_bits_sum);
|
|
COPY(filler_bits_sum);
|
|
COPY(wanted_bits_window);
|
|
COPY(bframe_bits);
|
|
COPY(initial_cpb_removal_delay);
|
|
COPY(initial_cpb_removal_delay_offset);
|
|
COPY(nrt_first_access_unit);
|
|
COPY(previous_cpb_final_arrival_time);
|
|
#undef COPY
|
|
}
|
|
//FIXME row_preds[] (not strictly necessary, but would improve prediction)
|
|
/* the rest of the variables are either constant or thread-local */
|
|
}
|
|
|
|
static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over )
|
|
{
|
|
/* find an interval ending on an overflow or underflow (depending on whether
|
|
* we're adding or removing bits), and starting on the earliest frame that
|
|
* can influence the buffer fill of that end frame. */
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
const double buffer_min = .1 * rcc->buffer_size;
|
|
const double buffer_max = .9 * rcc->buffer_size;
|
|
double fill = fills[*t0-1];
|
|
double parity = over ? 1. : -1.;
|
|
int start = -1, end = -1;
|
|
for( int i = *t0; i < rcc->num_entries; i++ )
|
|
{
|
|
fill += (rcc->entry_out[i]->i_cpb_duration * rcc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale -
|
|
qscale2bits( rcc->entry_out[i], rcc->entry_out[i]->new_qscale )) * parity;
|
|
fill = x264_clip3f(fill, 0, rcc->buffer_size);
|
|
fills[i] = fill;
|
|
if( fill <= buffer_min || i == 0 )
|
|
{
|
|
if( end >= 0 )
|
|
break;
|
|
start = i;
|
|
}
|
|
else if( fill >= buffer_max && start >= 0 )
|
|
end = i;
|
|
}
|
|
*t0 = start;
|
|
*t1 = end;
|
|
return start >= 0 && end >= 0;
|
|
}
|
|
|
|
static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max )
|
|
{
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
double qscale_orig, qscale_new;
|
|
int adjusted = 0;
|
|
if( t0 > 0 )
|
|
t0++;
|
|
for( int i = t0; i <= t1; i++ )
|
|
{
|
|
qscale_orig = rcc->entry_out[i]->new_qscale;
|
|
qscale_orig = x264_clip3f( qscale_orig, qscale_min, qscale_max );
|
|
qscale_new = qscale_orig * adjustment;
|
|
qscale_new = x264_clip3f( qscale_new, qscale_min, qscale_max );
|
|
rcc->entry_out[i]->new_qscale = qscale_new;
|
|
adjusted = adjusted || (qscale_new != qscale_orig);
|
|
}
|
|
return adjusted;
|
|
}
|
|
|
|
static double count_expected_bits( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
double expected_bits = 0;
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
{
|
|
ratecontrol_entry_t *rce = rcc->entry_out[i];
|
|
rce->expected_bits = expected_bits;
|
|
expected_bits += qscale2bits( rce, rce->new_qscale );
|
|
}
|
|
return expected_bits;
|
|
}
|
|
|
|
static int vbv_pass2( x264_t *h, double all_available_bits )
|
|
{
|
|
/* for each interval of buffer_full .. underflow, uniformly increase the qp of all
|
|
* frames in the interval until either buffer is full at some intermediate frame or the
|
|
* last frame in the interval no longer underflows. Recompute intervals and repeat.
|
|
* Then do the converse to put bits back into overflow areas until target size is met */
|
|
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
double *fills;
|
|
double expected_bits = 0;
|
|
double adjustment;
|
|
double prev_bits = 0;
|
|
int t0, t1;
|
|
double qscale_min = qp2qscale( h->param.rc.i_qp_min );
|
|
double qscale_max = qp2qscale( h->param.rc.i_qp_max );
|
|
int iterations = 0;
|
|
int adj_min, adj_max;
|
|
CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) );
|
|
|
|
fills++;
|
|
|
|
/* adjust overall stream size */
|
|
do
|
|
{
|
|
iterations++;
|
|
prev_bits = expected_bits;
|
|
|
|
if( expected_bits )
|
|
{ /* not first iteration */
|
|
adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9);
|
|
fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
|
|
t0 = 0;
|
|
/* fix overflows */
|
|
adj_min = 1;
|
|
while( adj_min && find_underflow( h, fills, &t0, &t1, 1 ) )
|
|
{
|
|
adj_min = fix_underflow( h, t0, t1, adjustment, qscale_min, qscale_max );
|
|
t0 = t1;
|
|
}
|
|
}
|
|
|
|
fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init);
|
|
t0 = 0;
|
|
/* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */
|
|
adj_max = 1;
|
|
while( adj_max && find_underflow( h, fills, &t0, &t1, 0 ) )
|
|
adj_max = fix_underflow( h, t0, t1, 1.001, qscale_min, qscale_max );
|
|
|
|
expected_bits = count_expected_bits( h );
|
|
} while( (expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) );
|
|
|
|
if( !adj_max )
|
|
x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n");
|
|
|
|
/* store expected vbv filling values for tracking when encoding */
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
rcc->entry_out[i]->expected_vbv = rcc->buffer_size - fills[i];
|
|
|
|
x264_free( fills-1 );
|
|
return 0;
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
static int init_pass2( x264_t *h )
|
|
{
|
|
x264_ratecontrol_t *rcc = h->rc;
|
|
uint64_t all_const_bits = 0;
|
|
double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
|
|
double duration = 0;
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
duration += rcc->entry[i].i_duration;
|
|
duration *= timescale;
|
|
uint64_t all_available_bits = h->param.rc.i_bitrate * 1000. * duration;
|
|
double rate_factor, step_mult;
|
|
double qblur = h->param.rc.f_qblur;
|
|
double cplxblur = h->param.rc.f_complexity_blur;
|
|
const int filter_size = (int)(qblur*4) | 1;
|
|
double expected_bits;
|
|
double *qscale, *blurred_qscale;
|
|
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
|
|
|
|
/* find total/average complexity & const_bits */
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
{
|
|
ratecontrol_entry_t *rce = &rcc->entry[i];
|
|
all_const_bits += rce->misc_bits;
|
|
}
|
|
|
|
if( all_available_bits < all_const_bits)
|
|
{
|
|
x264_log( h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
|
|
(int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)) );
|
|
return -1;
|
|
}
|
|
|
|
/* Blur complexities, to reduce local fluctuation of QP.
|
|
* We don't blur the QPs directly, because then one very simple frame
|
|
* could drag down the QP of a nearby complex frame and give it more
|
|
* bits than intended. */
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
{
|
|
ratecontrol_entry_t *rce = &rcc->entry[i];
|
|
double weight_sum = 0;
|
|
double cplx_sum = 0;
|
|
double weight = 1.0;
|
|
double gaussian_weight;
|
|
/* weighted average of cplx of future frames */
|
|
for( int j = 1; j < cplxblur*2 && j < rcc->num_entries-i; j++ )
|
|
{
|
|
ratecontrol_entry_t *rcj = &rcc->entry[i+j];
|
|
double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
|
|
weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
|
|
if( weight < .0001 )
|
|
break;
|
|
gaussian_weight = weight * exp( -j*j/200.0 );
|
|
weight_sum += gaussian_weight;
|
|
cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
|
|
}
|
|
/* weighted average of cplx of past frames */
|
|
weight = 1.0;
|
|
for( int j = 0; j <= cplxblur*2 && j <= i; j++ )
|
|
{
|
|
ratecontrol_entry_t *rcj = &rcc->entry[i-j];
|
|
double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
|
|
gaussian_weight = weight * exp( -j*j/200.0 );
|
|
weight_sum += gaussian_weight;
|
|
cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
|
|
weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
|
|
if( weight < .0001 )
|
|
break;
|
|
}
|
|
rce->blurred_complexity = cplx_sum / weight_sum;
|
|
}
|
|
|
|
CHECKED_MALLOC( qscale, sizeof(double)*rcc->num_entries );
|
|
if( filter_size > 1 )
|
|
CHECKED_MALLOC( blurred_qscale, sizeof(double)*rcc->num_entries );
|
|
else
|
|
blurred_qscale = qscale;
|
|
|
|
/* Search for a factor which, when multiplied by the RCEQ values from
|
|
* each frame, adds up to the desired total size.
|
|
* There is no exact closed-form solution because of VBV constraints and
|
|
* because qscale2bits is not invertible, but we can start with the simple
|
|
* approximation of scaling the 1st pass by the ratio of bitrates.
|
|
* The search range is probably overkill, but speed doesn't matter here. */
|
|
|
|
expected_bits = 1;
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
{
|
|
double q = get_qscale(h, &rcc->entry[i], 1.0, i);
|
|
expected_bits += qscale2bits(&rcc->entry[i], q);
|
|
rcc->last_qscale_for[rcc->entry[i].pict_type] = q;
|
|
}
|
|
step_mult = all_available_bits / expected_bits;
|
|
|
|
rate_factor = 0;
|
|
for( double step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
|
|
{
|
|
expected_bits = 0;
|
|
rate_factor += step;
|
|
|
|
rcc->last_non_b_pict_type = -1;
|
|
rcc->last_accum_p_norm = 1;
|
|
rcc->accum_p_norm = 0;
|
|
|
|
rcc->last_qscale_for[0] =
|
|
rcc->last_qscale_for[1] =
|
|
rcc->last_qscale_for[2] = pow( base_cplx, 1 - rcc->qcompress ) / rate_factor;
|
|
|
|
/* find qscale */
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
{
|
|
qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, -1 );
|
|
rcc->last_qscale_for[rcc->entry[i].pict_type] = qscale[i];
|
|
}
|
|
|
|
/* fixed I/B qscale relative to P */
|
|
for( int i = rcc->num_entries-1; i >= 0; i-- )
|
|
{
|
|
qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i], i );
|
|
assert(qscale[i] >= 0);
|
|
}
|
|
|
|
/* smooth curve */
|
|
if( filter_size > 1 )
|
|
{
|
|
assert( filter_size%2 == 1 );
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
{
|
|
ratecontrol_entry_t *rce = &rcc->entry[i];
|
|
double q = 0.0, sum = 0.0;
|
|
|
|
for( int j = 0; j < filter_size; j++ )
|
|
{
|
|
int idx = i+j-filter_size/2;
|
|
double d = idx-i;
|
|
double coeff = qblur==0 ? 1.0 : exp( -d*d/(qblur*qblur) );
|
|
if( idx < 0 || idx >= rcc->num_entries )
|
|
continue;
|
|
if( rce->pict_type != rcc->entry[idx].pict_type )
|
|
continue;
|
|
q += qscale[idx] * coeff;
|
|
sum += coeff;
|
|
}
|
|
blurred_qscale[i] = q/sum;
|
|
}
|
|
}
|
|
|
|
/* find expected bits */
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
{
|
|
ratecontrol_entry_t *rce = &rcc->entry[i];
|
|
rce->new_qscale = clip_qscale( h, rce->pict_type, blurred_qscale[i] );
|
|
assert(rce->new_qscale >= 0);
|
|
expected_bits += qscale2bits( rce, rce->new_qscale );
|
|
}
|
|
|
|
if( expected_bits > all_available_bits )
|
|
rate_factor -= step;
|
|
}
|
|
|
|
x264_free( qscale );
|
|
if( filter_size > 1 )
|
|
x264_free( blurred_qscale );
|
|
|
|
if( rcc->b_vbv )
|
|
if( vbv_pass2( h, all_available_bits ) )
|
|
return -1;
|
|
expected_bits = count_expected_bits( h );
|
|
|
|
if( fabs( expected_bits/all_available_bits - 1.0 ) > 0.01 )
|
|
{
|
|
double avgq = 0;
|
|
for( int i = 0; i < rcc->num_entries; i++ )
|
|
avgq += rcc->entry[i].new_qscale;
|
|
avgq = qscale2qp( avgq / rcc->num_entries );
|
|
|
|
if( expected_bits > all_available_bits || !rcc->b_vbv )
|
|
x264_log( h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n" );
|
|
x264_log( h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
|
|
(float)h->param.rc.i_bitrate,
|
|
expected_bits * rcc->fps / (rcc->num_entries * 1000.),
|
|
avgq );
|
|
if( expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2 )
|
|
{
|
|
if( h->param.rc.i_qp_min > 0 )
|
|
x264_log( h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min );
|
|
else
|
|
x264_log( h, X264_LOG_WARNING, "try reducing target bitrate\n" );
|
|
}
|
|
else if( expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2 )
|
|
{
|
|
if( h->param.rc.i_qp_max < QP_MAX )
|
|
x264_log( h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max );
|
|
else
|
|
x264_log( h, X264_LOG_WARNING, "try increasing target bitrate\n");
|
|
}
|
|
else if( !(rcc->b_2pass && rcc->b_vbv) )
|
|
x264_log( h, X264_LOG_WARNING, "internal error\n" );
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
return -1;
|
|
}
|