2025-04-28 08:47:28 +08:00

3135 lines
121 KiB
C

/*****************************************************************************
* ratecontrol.c: ratecontrol
*****************************************************************************
* Copyright (C) 2005-2025 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Michael Niedermayer <michaelni@gmx.at>
* Gabriel Bouvigne <gabriel.bouvigne@joost.com>
* Fiona Glaser <fiona@x264.com>
* Måns Rullgård <mru@mru.ath.cx>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#undef NDEBUG // always check asserts, the speed effect is far too small to disable them
#include "common/common.h"
#include "ratecontrol.h"
#include "me.h"
typedef struct
{
int pict_type;
int frame_type;
int kept_as_ref;
double qscale;
int mv_bits;
int tex_bits;
int misc_bits;
double expected_bits; /* total expected bits up to the current frame (current one excluded) */
double expected_vbv;
double new_qscale;
float new_qp;
int i_count;
int p_count;
int s_count;
float blurred_complexity;
char direct_mode;
int16_t weight[3][2];
int16_t i_weight_denom[2];
int refcount[16];
int refs;
int64_t i_duration;
int64_t i_cpb_duration;
int out_num;
} ratecontrol_entry_t;
typedef struct
{
float coeff_min;
float coeff;
float count;
float decay;
float offset;
} predictor_t;
struct x264_ratecontrol_t
{
/* constants */
int b_abr;
int b_2pass;
int b_vbv;
int b_vbv_min_rate;
double fps;
double bitrate;
double rate_tolerance;
double qcompress;
int nmb; /* number of macroblocks in a frame */
int qp_constant[3];
/* current frame */
ratecontrol_entry_t *rce;
float qpm; /* qp for current macroblock: precise float for AQ */
float qpa_rc; /* average of macroblocks' qp before aq */
float qpa_rc_prev;
int qpa_aq; /* average of macroblocks' qp after aq */
int qpa_aq_prev;
float qp_novbv; /* QP for the current frame if 1-pass VBV was disabled. */
/* VBV stuff */
double buffer_size;
int64_t buffer_fill_final;
int64_t buffer_fill_final_min;
double buffer_fill; /* planned buffer, if all in-progress frames hit their bit budget */
double buffer_rate; /* # of bits added to buffer_fill after each frame */
double vbv_max_rate; /* # of bits added to buffer_fill per second */
predictor_t *pred; /* predict frame size from satd */
int single_frame_vbv;
float rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */
/* ABR stuff */
int last_satd;
double last_rceq;
double cplxr_sum; /* sum of bits*qscale/rceq */
double expected_bits_sum; /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */
int64_t filler_bits_sum; /* sum in bits of finished frames' filler data */
double wanted_bits_window; /* target bitrate * window */
double cbr_decay;
double short_term_cplxsum;
double short_term_cplxcount;
double rate_factor_constant;
double ip_offset;
double pb_offset;
/* 2pass stuff */
FILE *p_stat_file_out;
char *psz_stat_file_tmpname;
FILE *p_mbtree_stat_file_out;
char *psz_mbtree_stat_file_tmpname;
char *psz_mbtree_stat_file_name;
FILE *p_mbtree_stat_file_in;
int num_entries; /* number of ratecontrol_entry_ts */
ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */
ratecontrol_entry_t **entry_out;
double last_qscale;
double last_qscale_for[3]; /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */
int last_non_b_pict_type;
double accum_p_qp; /* for determining I-frame quant */
double accum_p_norm;
double last_accum_p_norm;
double lmin[3]; /* min qscale by frame type */
double lmax[3];
double lstep; /* max change (multiply) in qscale per frame */
struct
{
uint16_t *qp_buffer[2]; /* Global buffers for converting MB-tree quantizer data. */
int qpbuf_pos; /* In order to handle pyramid reordering, QP buffer acts as a stack.
* This value is the current position (0 or 1). */
int src_mb_count;
/* For rescaling */
int rescale_enabled;
float *scale_buffer[2]; /* Intermediate buffers */
int filtersize[2]; /* filter size (H/V) */
float *coeffs[2];
int *pos[2];
int srcdim[2]; /* Source dimensions (W/H) */
} mbtree;
/* MBRC stuff */
volatile float frame_size_estimated; /* Access to this variable must be atomic: double is
* not atomic on all arches we care about */
volatile float bits_so_far;
double frame_size_maximum; /* Maximum frame size due to MinCR */
double frame_size_planned;
double slice_size_planned;
predictor_t *row_pred;
predictor_t row_preds[3][2];
predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */
int bframes; /* # consecutive B-frames before this P-frame */
int bframe_bits; /* total cost of those frames */
int i_zones;
x264_zone_t *zones;
x264_zone_t *prev_zone;
/* hrd stuff */
int initial_cpb_removal_delay;
int initial_cpb_removal_delay_offset;
double nrt_first_access_unit; /* nominal removal time */
double previous_cpb_final_arrival_time;
uint64_t hrd_multiply_denom;
};
static int parse_zones( x264_t *h );
static int init_pass2(x264_t *);
static float rate_estimate_qscale( x264_t *h );
static int update_vbv( x264_t *h, int bits );
static void update_vbv_plan( x264_t *h, int overhead );
static float predict_size( predictor_t *p, float q, float var );
static void update_predictor( predictor_t *p, float q, float var, float bits );
#define CMP_OPT_FIRST_PASS( opt, param_val )\
{\
if( ( p = strstr( opts, opt "=" ) ) && sscanf( p, opt "=%d" , &i ) && param_val != i )\
{\
x264_log( h, X264_LOG_ERROR, "different " opt " setting than first pass (%d vs %d)\n", param_val, i );\
return -1;\
}\
}
/* Terminology:
* qp = h.264's quantizer
* qscale = linearized quantizer = Lagrange multiplier
*/
static inline float qp2qscale( float qp )
{
return 0.85f * powf( 2.0f, ( qp - (12.0f + QP_BD_OFFSET) ) / 6.0f );
}
static inline float qscale2qp( float qscale )
{
return (12.0f + QP_BD_OFFSET) + 6.0f * log2f( qscale/0.85f );
}
/* Texture bitrate is not quite inversely proportional to qscale,
* probably due the the changing number of SKIP blocks.
* MV bits level off at about qp<=12, because the lambda used
* for motion estimation is constant there. */
static inline double qscale2bits( ratecontrol_entry_t *rce, double qscale )
{
if( qscale<0.1 )
qscale = 0.1;
return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 )
+ rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 )
+ rce->misc_bits;
}
static ALWAYS_INLINE uint32_t ac_energy_var( uint64_t sum_ssd, int shift, x264_frame_t *frame, int i, int b_store )
{
uint32_t sum = sum_ssd;
uint32_t ssd = sum_ssd >> 32;
if( b_store )
{
frame->i_pixel_sum[i] += sum;
frame->i_pixel_ssd[i] += ssd;
}
return ssd - ((uint64_t)sum * sum >> shift);
}
static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i, int b_chroma, int b_field, int b_store )
{
int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16;
int stride = frame->i_stride[i];
int offset = b_field
? 16 * mb_x + height * (mb_y&~1) * stride + (mb_y&1) * stride
: 16 * mb_x + height * mb_y * stride;
stride <<= b_field;
if( b_chroma )
{
ALIGNED_ARRAY_64( pixel, pix,[FENC_STRIDE*16] );
int chromapix = h->luma2chroma_pixel[PIXEL_16x16];
int shift = 7 - CHROMA_V_SHIFT;
h->mc.load_deinterleave_chroma_fenc( pix, frame->plane[1] + offset, stride, height );
return ac_energy_var( h->pixf.var[chromapix]( pix, FENC_STRIDE ), shift, frame, 1, b_store )
+ ac_energy_var( h->pixf.var[chromapix]( pix+FENC_STRIDE/2, FENC_STRIDE ), shift, frame, 2, b_store );
}
else
return ac_energy_var( h->pixf.var[PIXEL_16x16]( frame->plane[i] + offset, stride ), 8, frame, i, b_store );
}
// Find the total AC energy of the block in all planes.
static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
{
/* This function contains annoying hacks because GCC has a habit of reordering emms
* and putting it after floating point ops. As a result, we put the emms at the end of the
* function and make sure that its always called before the float math. Noinline makes
* sure no reordering goes on. */
uint32_t var;
x264_prefetch_fenc( h, frame, mb_x, mb_y );
if( h->mb.b_adaptive_mbaff )
{
/* We don't know the super-MB mode we're going to pick yet, so
* simply try both and pick the lower of the two. */
uint32_t var_interlaced, var_progressive;
var_interlaced = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 1, 1 );
var_progressive = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 0, 0 );
if( CHROMA444 )
{
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 1, 1 );
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 0, 0 );
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 1, 1 );
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 0, 0 );
}
else if( CHROMA_FORMAT )
{
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 1, 1 );
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 0, 0 );
}
var = X264_MIN( var_interlaced, var_progressive );
}
else
{
var = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, PARAM_INTERLACED, 1 );
if( CHROMA444 )
{
var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, PARAM_INTERLACED, 1 );
var += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, PARAM_INTERLACED, 1 );
}
else if( CHROMA_FORMAT )
var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, PARAM_INTERLACED, 1 );
}
x264_emms();
return var;
}
void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame, float *quant_offsets )
{
/* Initialize frame stats */
for( int i = 0; i < 3; i++ )
{
frame->i_pixel_sum[i] = 0;
frame->i_pixel_ssd[i] = 0;
}
/* Degenerate cases */
if( h->param.rc.i_aq_mode == X264_AQ_NONE || h->param.rc.f_aq_strength == 0 )
{
/* Need to init it anyways for MB tree */
if( h->param.rc.i_aq_mode && h->param.rc.f_aq_strength == 0 )
{
if( quant_offsets )
{
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = quant_offsets[mb_xy];
if( h->frames.b_have_lowres )
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8( frame->f_qp_offset[mb_xy] );
}
else
{
memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
if( h->frames.b_have_lowres )
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
frame->i_inv_qscale_factor[mb_xy] = 256;
}
}
/* Need variance data for weighted prediction */
if( h->param.analyse.i_weighted_pred )
{
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
ac_energy_mb( h, mb_x, mb_y, frame );
}
else
return;
}
/* Actual adaptive quantization */
else
{
/* constants chosen to result in approximately the same overall bitrate as without AQ.
* FIXME: while they're written in 5 significant digits, they're only tuned to 2. */
float strength;
float avg_adj = 0.f;
float bias_strength = 0.f;
if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE || h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED )
{
float bit_depth_correction = 1.f / (1 << (2*(BIT_DEPTH-8)));
float avg_adj_pow2 = 0.f;
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
{
uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
float qp_adj = powf( energy * bit_depth_correction + 1, 0.125f );
frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
avg_adj += qp_adj;
avg_adj_pow2 += qp_adj * qp_adj;
}
avg_adj /= h->mb.i_mb_count;
avg_adj_pow2 /= h->mb.i_mb_count;
strength = h->param.rc.f_aq_strength * avg_adj;
avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - 14.f) / avg_adj;
bias_strength = h->param.rc.f_aq_strength;
}
else
strength = h->param.rc.f_aq_strength * 1.0397f;
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
{
float qp_adj;
int mb_xy = mb_x + mb_y*h->mb.i_mb_stride;
if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED )
{
qp_adj = frame->f_qp_offset[mb_xy];
qp_adj = strength * (qp_adj - avg_adj) + bias_strength * (1.f - 14.f / (qp_adj * qp_adj));
}
else if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
{
qp_adj = frame->f_qp_offset[mb_xy];
qp_adj = strength * (qp_adj - avg_adj);
}
else
{
uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - (14.427f + 2*(BIT_DEPTH-8)));
}
if( quant_offsets )
qp_adj += quant_offsets[mb_xy];
frame->f_qp_offset[mb_xy] =
frame->f_qp_offset_aq[mb_xy] = qp_adj;
if( h->frames.b_have_lowres )
frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8(qp_adj);
}
}
/* Remove mean from SSD calculation */
for( int i = 0; i < 3; i++ )
{
uint64_t ssd = frame->i_pixel_ssd[i];
uint64_t sum = frame->i_pixel_sum[i];
int width = 16*h->mb.i_mb_width >> (i && CHROMA_H_SHIFT);
int height = 16*h->mb.i_mb_height >> (i && CHROMA_V_SHIFT);
frame->i_pixel_ssd[i] = ssd - (sum * sum + width * height / 2) / (width * height);
}
}
static int macroblock_tree_rescale_init( x264_t *h, x264_ratecontrol_t *rc )
{
/* Use fractional QP array dimensions to compensate for edge padding */
float srcdim[2] = {rc->mbtree.srcdim[0] / 16.f, rc->mbtree.srcdim[1] / 16.f};
float dstdim[2] = { h->param.i_width / 16.f, h->param.i_height / 16.f};
int srcdimi[2] = {ceil(srcdim[0]), ceil(srcdim[1])};
int dstdimi[2] = {ceil(dstdim[0]), ceil(dstdim[1])};
if( h->param.b_interlaced || h->param.b_fake_interlaced )
{
srcdimi[1] = (srcdimi[1]+1)&~1;
dstdimi[1] = (dstdimi[1]+1)&~1;
}
rc->mbtree.src_mb_count = srcdimi[0] * srcdimi[1];
CHECKED_MALLOC( rc->mbtree.qp_buffer[0], rc->mbtree.src_mb_count * sizeof(uint16_t) );
if( h->param.i_bframe_pyramid && h->param.rc.b_stat_read )
CHECKED_MALLOC( rc->mbtree.qp_buffer[1], rc->mbtree.src_mb_count * sizeof(uint16_t) );
rc->mbtree.qpbuf_pos = -1;
/* No rescaling to do */
if( srcdimi[0] == dstdimi[0] && srcdimi[1] == dstdimi[1] )
return 0;
rc->mbtree.rescale_enabled = 1;
/* Allocate intermediate scaling buffers */
CHECKED_MALLOC( rc->mbtree.scale_buffer[0], srcdimi[0] * srcdimi[1] * sizeof(float) );
CHECKED_MALLOC( rc->mbtree.scale_buffer[1], dstdimi[0] * srcdimi[1] * sizeof(float) );
/* Allocate and calculate resize filter parameters and coefficients */
for( int i = 0; i < 2; i++ )
{
if( srcdim[i] > dstdim[i] ) // downscale
rc->mbtree.filtersize[i] = 1 + (2 * srcdimi[i] + dstdimi[i] - 1) / dstdimi[i];
else // upscale
rc->mbtree.filtersize[i] = 3;
CHECKED_MALLOC( rc->mbtree.coeffs[i], rc->mbtree.filtersize[i] * dstdimi[i] * sizeof(float) );
CHECKED_MALLOC( rc->mbtree.pos[i], dstdimi[i] * sizeof(int) );
/* Initialize filter coefficients */
float inc = srcdim[i] / dstdim[i];
float dmul = inc > 1.f ? dstdim[i] / srcdim[i] : 1.f;
float dstinsrc = 0.5f * inc - 0.5f;
int filtersize = rc->mbtree.filtersize[i];
for( int j = 0; j < dstdimi[i]; j++ )
{
int pos = dstinsrc - (filtersize - 2.f) * 0.5f;
float sum = 0.0;
rc->mbtree.pos[i][j] = pos;
for( int k = 0; k < filtersize; k++ )
{
float d = fabs( pos + k - dstinsrc ) * dmul;
float coeff = X264_MAX( 1.f - d, 0 );
rc->mbtree.coeffs[i][j * filtersize + k] = coeff;
sum += coeff;
}
sum = 1.0f / sum;
for( int k = 0; k < filtersize; k++ )
rc->mbtree.coeffs[i][j * filtersize + k] *= sum;
dstinsrc += inc;
}
}
/* Write back actual qp array dimensions */
rc->mbtree.srcdim[0] = srcdimi[0];
rc->mbtree.srcdim[1] = srcdimi[1];
return 0;
fail:
return -1;
}
static void macroblock_tree_rescale_destroy( x264_ratecontrol_t *rc )
{
for( int i = 0; i < 2; i++ )
{
x264_free( rc->mbtree.qp_buffer[i] );
x264_free( rc->mbtree.scale_buffer[i] );
x264_free( rc->mbtree.coeffs[i] );
x264_free( rc->mbtree.pos[i] );
}
}
static ALWAYS_INLINE float tapfilter( float *src, int pos, int max, int stride, float *coeff, int filtersize )
{
float sum = 0.f;
for( int i = 0; i < filtersize; i++, pos++ )
sum += src[x264_clip3( pos, 0, max-1 )*stride] * coeff[i];
return sum;
}
static void macroblock_tree_rescale( x264_t *h, x264_ratecontrol_t *rc, float *dst )
{
float *input, *output;
int filtersize, stride, height;
/* H scale first */
input = rc->mbtree.scale_buffer[0];
output = rc->mbtree.scale_buffer[1];
filtersize = rc->mbtree.filtersize[0];
stride = rc->mbtree.srcdim[0];
height = rc->mbtree.srcdim[1];
for( int y = 0; y < height; y++, input += stride, output += h->mb.i_mb_width )
{
float *coeff = rc->mbtree.coeffs[0];
for( int x = 0; x < h->mb.i_mb_width; x++, coeff+=filtersize )
output[x] = tapfilter( input, rc->mbtree.pos[0][x], stride, 1, coeff, filtersize );
}
/* V scale next */
input = rc->mbtree.scale_buffer[1];
output = dst;
filtersize = rc->mbtree.filtersize[1];
stride = h->mb.i_mb_width;
height = rc->mbtree.srcdim[1];
for( int x = 0; x < h->mb.i_mb_width; x++, input++, output++ )
{
float *coeff = rc->mbtree.coeffs[1];
for( int y = 0; y < h->mb.i_mb_height; y++, coeff+=filtersize )
output[y*stride] = tapfilter( input, rc->mbtree.pos[1][y], height, stride, coeff, filtersize );
}
}
int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame, float *quant_offsets )
{
x264_ratecontrol_t *rc = h->rc;
uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type;
if( rc->entry[frame->i_frame].kept_as_ref )
{
uint8_t i_type;
if( rc->mbtree.qpbuf_pos < 0 )
{
do
{
rc->mbtree.qpbuf_pos++;
if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) )
goto fail;
if( fread( rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], sizeof(uint16_t), rc->mbtree.src_mb_count, rc->p_mbtree_stat_file_in ) != (unsigned)rc->mbtree.src_mb_count )
goto fail;
if( i_type != i_type_actual && rc->mbtree.qpbuf_pos == 1 )
{
x264_log( h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual );
return -1;
}
} while( i_type != i_type_actual );
}
float *dst = rc->mbtree.rescale_enabled ? rc->mbtree.scale_buffer[0] : frame->f_qp_offset;
h->mc.mbtree_fix8_unpack( dst, rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], rc->mbtree.src_mb_count );
if( rc->mbtree.rescale_enabled )
macroblock_tree_rescale( h, rc, frame->f_qp_offset );
if( h->frames.b_have_lowres )
for( int i = 0; i < h->mb.i_mb_count; i++ )
frame->i_inv_qscale_factor[i] = x264_exp2fix8( frame->f_qp_offset[i] );
rc->mbtree.qpbuf_pos--;
}
else
x264_adaptive_quant_frame( h, frame, quant_offsets );
return 0;
fail:
x264_log( h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n" );
return -1;
}
int x264_reference_build_list_optimal( x264_t *h )
{
ratecontrol_entry_t *rce = h->rc->rce;
x264_frame_t *frames[16];
x264_weight_t weights[16][3];
int refcount[16];
if( rce->refs != h->i_ref[0] )
return -1;
memcpy( frames, h->fref[0], sizeof(frames) );
memcpy( refcount, rce->refcount, sizeof(refcount) );
memcpy( weights, h->fenc->weight, sizeof(weights) );
memset( &h->fenc->weight[1][0], 0, sizeof(x264_weight_t[15][3]) );
/* For now don't reorder ref 0; it seems to lower quality
in most cases due to skips. */
for( int ref = 1; ref < h->i_ref[0]; ref++ )
{
int max = -1;
int bestref = 1;
for( int i = 1; i < h->i_ref[0]; i++ )
/* Favor lower POC as a tiebreaker. */
COPY2_IF_GT( max, refcount[i], bestref, i );
/* FIXME: If there are duplicates from frames other than ref0 then it is possible
* that the optimal ordering doesn't place every duplicate. */
refcount[bestref] = -1;
h->fref[0][ref] = frames[bestref];
memcpy( h->fenc->weight[ref], weights[bestref], sizeof(weights[bestref]) );
}
return 0;
}
static char *strcat_filename( char *input, char *suffix )
{
char *output = x264_malloc( strlen( input ) + strlen( suffix ) + 1 );
if( !output )
return NULL;
strcpy( output, input );
strcat( output, suffix );
return output;
}
void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
{
x264_ratecontrol_t *rc = h->rc;
if( !b_init && rc->b_2pass )
return;
if( h->param.rc.i_rc_method == X264_RC_CRF )
{
/* Arbitrary rescaling to make CRF somewhat similar to QP.
* Try to compensate for MB-tree's effects as well. */
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress )
/ qp2qscale( h->param.rc.f_rf_constant + mbtree_offset + QP_BD_OFFSET );
}
if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 )
{
/* We don't support changing the ABR bitrate right now,
so if the stream starts as CBR, keep it CBR. */
if( rc->b_vbv_min_rate )
h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) )
{
h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps;
x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n",
h->param.rc.i_vbv_buffer_size );
}
int kilobit_size = h->param.i_avcintra_class ? 1024 : 1000;
int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * kilobit_size;
int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * kilobit_size;
/* Init HRD */
if( h->param.i_nal_hrd && b_init )
{
h->sps->vui.hrd.i_cpb_cnt = 1;
h->sps->vui.hrd.b_cbr_hrd = h->param.i_nal_hrd == X264_NAL_HRD_CBR;
h->sps->vui.hrd.i_time_offset_length = 0;
#define BR_SHIFT 6
#define CPB_SHIFT 4
// normalize HRD size and rate to the value / scale notation
h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( vbv_max_bitrate ) - BR_SHIFT, 0, 15 );
h->sps->vui.hrd.i_bit_rate_value = vbv_max_bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
h->sps->vui.hrd.i_bit_rate_unscaled = h->sps->vui.hrd.i_bit_rate_value << ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( vbv_buffer_size ) - CPB_SHIFT, 0, 15 );
h->sps->vui.hrd.i_cpb_size_value = vbv_buffer_size >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
h->sps->vui.hrd.i_cpb_size_unscaled = h->sps->vui.hrd.i_cpb_size_value << ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
#undef CPB_SHIFT
#undef BR_SHIFT
// arbitrary
#define MAX_DURATION 0.5
int max_cpb_output_delay = X264_MIN( h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick, INT_MAX );
int max_dpb_output_delay = h->sps->vui.i_max_dec_frame_buffering * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick;
int max_delay = (int)(90000.0 * (double)h->sps->vui.hrd.i_cpb_size_unscaled / h->sps->vui.hrd.i_bit_rate_unscaled + 0.5);
h->sps->vui.hrd.i_initial_cpb_removal_delay_length = 2 + x264_clip3( 32 - x264_clz( max_delay ), 4, 22 );
h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 31 );
h->sps->vui.hrd.i_dpb_output_delay_length = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 31 );
#undef MAX_DURATION
vbv_buffer_size = h->sps->vui.hrd.i_cpb_size_unscaled;
vbv_max_bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
}
else if( h->param.i_nal_hrd && !b_init )
{
x264_log( h, X264_LOG_WARNING, "VBV parameters cannot be changed when NAL HRD is in use\n" );
return;
}
h->sps->vui.hrd.i_bit_rate_unscaled = vbv_max_bitrate;
h->sps->vui.hrd.i_cpb_size_unscaled = vbv_buffer_size;
if( rc->b_vbv_min_rate )
rc->bitrate = (double)h->param.rc.i_bitrate * kilobit_size;
rc->buffer_rate = vbv_max_bitrate / rc->fps;
rc->vbv_max_rate = vbv_max_bitrate;
rc->buffer_size = vbv_buffer_size;
rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size;
if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR )
rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size
* 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate);
if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.f_rf_constant_max )
{
rc->rate_factor_max_increment = h->param.rc.f_rf_constant_max - h->param.rc.f_rf_constant;
if( rc->rate_factor_max_increment <= 0 )
{
x264_log( h, X264_LOG_WARNING, "CRF max must be greater than CRF\n" );
rc->rate_factor_max_increment = 0;
}
}
if( b_init )
{
if( h->param.rc.f_vbv_buffer_init > 1. )
h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
h->param.rc.f_vbv_buffer_init = x264_clip3f( X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ), 0, 1);
rc->buffer_fill_final =
rc->buffer_fill_final_min = rc->buffer_size * h->param.rc.f_vbv_buffer_init * h->sps->vui.i_time_scale;
rc->b_vbv = 1;
rc->b_vbv_min_rate = !rc->b_2pass
&& h->param.rc.i_rc_method == X264_RC_ABR
&& h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate;
}
}
}
int x264_ratecontrol_new( x264_t *h )
{
x264_ratecontrol_t *rc;
x264_emms();
CHECKED_MALLOCZERO( h->rc, h->param.i_threads * sizeof(x264_ratecontrol_t) );
rc = h->rc;
rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read;
rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read;
/* FIXME: use integers */
if( h->param.i_fps_num > 0 && h->param.i_fps_den > 0 )
rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den;
else
rc->fps = 25.0;
if( h->param.rc.b_mb_tree )
{
h->param.rc.f_pb_factor = 1;
rc->qcompress = 1;
}
else
rc->qcompress = h->param.rc.f_qcompress;
rc->bitrate = h->param.rc.i_bitrate * (h->param.i_avcintra_class ? 1024. : 1000.);
rc->rate_tolerance = h->param.rc.f_rate_tolerance;
rc->nmb = h->mb.i_mb_count;
rc->last_non_b_pict_type = -1;
rc->cbr_decay = 1.0;
if( h->param.rc.i_rc_method != X264_RC_ABR && h->param.rc.b_stat_read )
{
x264_log( h, X264_LOG_ERROR, "CRF/CQP is incompatible with 2pass.\n" );
return -1;
}
x264_ratecontrol_init_reconfigurable( h, 1 );
if( h->param.i_nal_hrd )
{
uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale;
uint64_t num = 90000;
x264_reduce_fraction64( &num, &denom );
rc->hrd_multiply_denom = 90000 / num;
double bits_required = log2( num )
+ log2( h->sps->vui.i_time_scale )
+ log2( h->sps->vui.hrd.i_cpb_size_unscaled );
if( bits_required >= 63 )
{
x264_log( h, X264_LOG_ERROR, "HRD with very large timescale and bufsize not supported\n" );
return -1;
}
}
if( rc->rate_tolerance < 0.01 )
{
x264_log( h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n" );
rc->rate_tolerance = 0.01;
}
h->mb.b_variable_qp = rc->b_vbv || h->param.rc.i_aq_mode;
if( rc->b_abr )
{
/* FIXME ABR_INIT_QP is actually used only in CRF */
#define ABR_INIT_QP (( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) + QP_BD_OFFSET)
rc->accum_p_norm = .01;
rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm;
/* estimated ratio that produces a reasonable QP for the first I-frame */
rc->cplxr_sum = .01 * pow( 7.0e5, rc->qcompress ) * pow( h->mb.i_mb_count, 0.5 );
rc->wanted_bits_window = 1.0 * rc->bitrate / rc->fps;
rc->last_non_b_pict_type = SLICE_TYPE_I;
}
rc->ip_offset = 6.0 * log2f( h->param.rc.f_ip_factor );
rc->pb_offset = 6.0 * log2f( h->param.rc.f_pb_factor );
rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, QP_MAX );
rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, QP_MAX );
h->mb.ip_offset = rc->ip_offset + 0.5;
rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 );
rc->last_qscale = qp2qscale( 26 + QP_BD_OFFSET );
int num_preds = h->param.b_sliced_threads * h->param.i_threads + 1;
CHECKED_MALLOC( rc->pred, 5 * sizeof(predictor_t) * num_preds );
CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) );
static const float pred_coeff_table[3] = { 1.0, 1.0, 1.5 };
for( int i = 0; i < 3; i++ )
{
rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP );
rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min );
rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max );
for( int j = 0; j < num_preds; j++ )
{
rc->pred[i+j*5].coeff_min = pred_coeff_table[i] / 2;
rc->pred[i+j*5].coeff = pred_coeff_table[i];
rc->pred[i+j*5].count = 1.0;
rc->pred[i+j*5].decay = 0.5;
rc->pred[i+j*5].offset = 0.0;
}
for( int j = 0; j < 2; j++ )
{
rc->row_preds[i][j].coeff_min = .25 / 4;
rc->row_preds[i][j].coeff = .25;
rc->row_preds[i][j].count = 1.0;
rc->row_preds[i][j].decay = 0.5;
rc->row_preds[i][j].offset = 0.0;
}
}
rc->pred_b_from_p->coeff_min = 0.5 / 2;
rc->pred_b_from_p->coeff = 0.5;
rc->pred_b_from_p->count = 1.0;
rc->pred_b_from_p->decay = 0.5;
rc->pred_b_from_p->offset = 0.0;
if( parse_zones( h ) < 0 )
{
x264_log( h, X264_LOG_ERROR, "failed to parse zones\n" );
return -1;
}
/* Load stat file and init 2pass algo */
if( h->param.rc.b_stat_read )
{
char *p, *stats_in, *stats_buf;
/* read 1st pass stats */
assert( h->param.rc.psz_stat_in );
stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in );
if( !stats_buf )
{
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
return -1;
}
if( h->param.rc.b_mb_tree )
{
char *mbtree_stats_in = strcat_filename( h->param.rc.psz_stat_in, ".mbtree" );
if( !mbtree_stats_in )
return -1;
rc->p_mbtree_stat_file_in = x264_fopen( mbtree_stats_in, "rb" );
x264_free( mbtree_stats_in );
if( !rc->p_mbtree_stat_file_in )
{
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
return -1;
}
}
/* check whether 1st pass options were compatible with current options */
if( strncmp( stats_buf, "#options:", 9 ) )
{
x264_log( h, X264_LOG_ERROR, "options list in stats file not valid\n" );
return -1;
}
float res_factor, res_factor_bits;
{
int i, j;
uint32_t k, l;
char *opts = stats_buf;
stats_in = strchr( stats_buf, '\n' );
if( !stats_in )
return -1;
*stats_in = '\0';
stats_in++;
if( sscanf( opts, "#options: %dx%d", &i, &j ) != 2 )
{
x264_log( h, X264_LOG_ERROR, "resolution specified in stats file not valid\n" );
return -1;
}
else if( h->param.rc.b_mb_tree )
{
rc->mbtree.srcdim[0] = i;
rc->mbtree.srcdim[1] = j;
}
res_factor = (float)h->param.i_width * h->param.i_height / (i*j);
/* Change in bits relative to resolution isn't quite linear on typical sources,
* so we'll at least try to roughly approximate this effect. */
res_factor_bits = powf( res_factor, 0.7 );
if( !( p = strstr( opts, "timebase=" ) ) || sscanf( p, "timebase=%u/%u", &k, &l ) != 2 )
{
x264_log( h, X264_LOG_ERROR, "timebase specified in stats file not valid\n" );
return -1;
}
if( k != h->param.i_timebase_num || l != h->param.i_timebase_den )
{
x264_log( h, X264_LOG_ERROR, "timebase mismatch with 1st pass (%u/%u vs %u/%u)\n",
h->param.i_timebase_num, h->param.i_timebase_den, k, l );
return -1;
}
CMP_OPT_FIRST_PASS( "bitdepth", BIT_DEPTH );
CMP_OPT_FIRST_PASS( "weightp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) );
CMP_OPT_FIRST_PASS( "bframes", h->param.i_bframe );
CMP_OPT_FIRST_PASS( "b_pyramid", h->param.i_bframe_pyramid );
CMP_OPT_FIRST_PASS( "intra_refresh", h->param.b_intra_refresh );
CMP_OPT_FIRST_PASS( "open_gop", h->param.b_open_gop );
CMP_OPT_FIRST_PASS( "bluray_compat", h->param.b_bluray_compat );
CMP_OPT_FIRST_PASS( "mbtree", h->param.rc.b_mb_tree );
if( (p = strstr( opts, "interlaced=" )) )
{
char *current = h->param.b_interlaced ? h->param.b_tff ? "tff" : "bff" : h->param.b_fake_interlaced ? "fake" : "0";
char buf[5];
sscanf( p, "interlaced=%4s", buf );
if( strcmp( current, buf ) )
{
x264_log( h, X264_LOG_ERROR, "different interlaced setting than first pass (%s vs %s)\n", current, buf );
return -1;
}
}
if( (p = strstr( opts, "keyint=" )) )
{
p += 7;
char buf[13] = "infinite ";
if( h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE )
sprintf( buf, "%d ", h->param.i_keyint_max );
if( strncmp( p, buf, strlen(buf) ) )
{
x264_log( h, X264_LOG_ERROR, "different keyint setting than first pass (%.*s vs %.*s)\n",
strlen(buf)-1, buf, strcspn(p, " "), p );
return -1;
}
}
if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR )
x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" );
if( !strstr( opts, "direct=3" ) && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
{
x264_log( h, X264_LOG_WARNING, "direct=auto not used on the first pass\n" );
h->mb.b_direct_auto_write = 1;
}
if( ( p = strstr( opts, "b_adapt=" ) ) && sscanf( p, "b_adapt=%d", &i ) && i >= X264_B_ADAPT_NONE && i <= X264_B_ADAPT_TRELLIS )
h->param.i_bframe_adaptive = i;
else if( h->param.i_bframe )
{
x264_log( h, X264_LOG_ERROR, "b_adapt method specified in stats file not valid\n" );
return -1;
}
if( (h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size) && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) )
h->param.rc.i_lookahead = i;
}
/* find number of pics */
p = stats_in;
int num_entries;
for( num_entries = -1; p; num_entries++ )
p = strchr( p + 1, ';' );
if( !num_entries )
{
x264_log( h, X264_LOG_ERROR, "empty stats file\n" );
return -1;
}
rc->num_entries = num_entries;
if( h->param.i_frame_total < rc->num_entries && h->param.i_frame_total > 0 )
{
x264_log( h, X264_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)\n",
h->param.i_frame_total, rc->num_entries );
}
if( h->param.i_frame_total > rc->num_entries )
{
x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)\n",
h->param.i_frame_total, rc->num_entries );
return -1;
}
CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) );
CHECKED_MALLOC( rc->entry_out, rc->num_entries * sizeof(ratecontrol_entry_t*) );
/* init all to skipped p frames */
for( int i = 0; i < rc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rc->entry[i];
rce->pict_type = SLICE_TYPE_P;
rce->qscale = rce->new_qscale = qp2qscale( 20 + QP_BD_OFFSET );
rce->misc_bits = rc->nmb + 10;
rce->new_qp = 0;
rc->entry_out[i] = rce;
}
/* read stats */
p = stats_in;
double total_qp_aq = 0;
for( int i = 0; i < rc->num_entries; i++ )
{
ratecontrol_entry_t *rce;
int frame_number = 0;
int frame_out_number = 0;
char pict_type = 0;
int e;
char *next;
float qp_rc, qp_aq;
int ref;
next= strchr(p, ';');
if( next )
*next++ = 0; //sscanf is unbelievably slow on long strings
e = sscanf( p, " in:%d out:%d ", &frame_number, &frame_out_number );
if( frame_number < 0 || frame_number >= rc->num_entries )
{
x264_log( h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i );
return -1;
}
if( frame_out_number < 0 || frame_out_number >= rc->num_entries )
{
x264_log( h, X264_LOG_ERROR, "bad frame output number (%d) at stats line %d\n", frame_out_number, i );
return -1;
}
rce = &rc->entry[frame_number];
rc->entry_out[frame_out_number] = rce;
rce->direct_mode = 0;
e += sscanf( p, " in:%*d out:%*d type:%c dur:%"SCNd64" cpbdur:%"SCNd64" q:%f aq:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
&pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp_rc, &qp_aq, &rce->tex_bits,
&rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count,
&rce->s_count, &rce->direct_mode );
rce->tex_bits *= res_factor_bits;
rce->mv_bits *= res_factor_bits;
rce->misc_bits *= res_factor_bits;
rce->i_count *= res_factor;
rce->p_count *= res_factor;
rce->s_count *= res_factor;
p = strstr( p, "ref:" );
if( !p )
goto parse_error;
p += 4;
for( ref = 0; ref < 16; ref++ )
{
if( sscanf( p, " %d", &rce->refcount[ref] ) != 1 )
break;
p = strchr( p+1, ' ' );
if( !p )
goto parse_error;
}
rce->refs = ref;
/* find weights */
rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
char *w = strchr( p, 'w' );
if( w )
{
int count = sscanf( w, "w:%hd,%hd,%hd,%hd,%hd,%hd,%hd,%hd",
&rce->i_weight_denom[0], &rce->weight[0][0], &rce->weight[0][1],
&rce->i_weight_denom[1], &rce->weight[1][0], &rce->weight[1][1],
&rce->weight[2][0], &rce->weight[2][1] );
if( count == 3 )
rce->i_weight_denom[1] = -1;
else if( count != 8 )
rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
}
if( pict_type != 'b' )
rce->kept_as_ref = 1;
switch( pict_type )
{
case 'I':
rce->frame_type = X264_TYPE_IDR;
rce->pict_type = SLICE_TYPE_I;
break;
case 'i':
rce->frame_type = X264_TYPE_I;
rce->pict_type = SLICE_TYPE_I;
break;
case 'P':
rce->frame_type = X264_TYPE_P;
rce->pict_type = SLICE_TYPE_P;
break;
case 'B':
rce->frame_type = X264_TYPE_BREF;
rce->pict_type = SLICE_TYPE_B;
break;
case 'b':
rce->frame_type = X264_TYPE_B;
rce->pict_type = SLICE_TYPE_B;
break;
default: e = -1; break;
}
if( e < 14 )
{
parse_error:
x264_log( h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e );
return -1;
}
rce->qscale = qp2qscale( qp_rc );
total_qp_aq += qp_aq;
p = next;
}
if( !h->param.b_stitchable )
h->pps->i_pic_init_qp = SPEC_QP( (int)(total_qp_aq / rc->num_entries + 0.5) );
x264_free( stats_buf );
if( h->param.rc.i_rc_method == X264_RC_ABR )
{
if( init_pass2( h ) < 0 )
return -1;
} /* else we're using constant quant, so no need to run the bitrate allocation */
}
/* Open output file */
/* If input and output files are the same, output to a temp file
* and move it to the real name only when it's complete */
if( h->param.rc.b_stat_write )
{
char *p;
rc->psz_stat_file_tmpname = strcat_filename( h->param.rc.psz_stat_out, ".temp" );
if( !rc->psz_stat_file_tmpname )
return -1;
rc->p_stat_file_out = x264_fopen( rc->psz_stat_file_tmpname, "wb" );
if( rc->p_stat_file_out == NULL )
{
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
return -1;
}
p = x264_param2string( &h->param, 1 );
if( p )
fprintf( rc->p_stat_file_out, "#options: %s\n", p );
x264_free( p );
if( h->param.rc.b_mb_tree && !h->param.rc.b_stat_read )
{
rc->psz_mbtree_stat_file_tmpname = strcat_filename( h->param.rc.psz_stat_out, ".mbtree.temp" );
rc->psz_mbtree_stat_file_name = strcat_filename( h->param.rc.psz_stat_out, ".mbtree" );
if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name )
return -1;
rc->p_mbtree_stat_file_out = x264_fopen( rc->psz_mbtree_stat_file_tmpname, "wb" );
if( rc->p_mbtree_stat_file_out == NULL )
{
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
return -1;
}
}
}
if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) )
{
if( !h->param.rc.b_stat_read )
{
rc->mbtree.srcdim[0] = h->param.i_width;
rc->mbtree.srcdim[1] = h->param.i_height;
}
if( macroblock_tree_rescale_init( h, rc ) < 0 )
return -1;
}
for( int i = 0; i<h->param.i_threads; i++ )
{
h->thread[i]->rc = rc+i;
if( i )
{
rc[i] = rc[0];
h->thread[i]->param = h->param;
h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp;
h->thread[i]->mb.ip_offset = h->mb.ip_offset;
}
}
return 0;
fail:
return -1;
}
static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
{
int len = 0;
char *tok, UNUSED *saveptr=NULL;
z->param = NULL;
z->f_bitrate_factor = 1;
if( 3 <= sscanf(p, "%d,%d,q=%d%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
z->b_force_qp = 1;
else if( 3 <= sscanf(p, "%d,%d,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
z->b_force_qp = 0;
else if( 2 <= sscanf(p, "%d,%d%n", &z->i_start, &z->i_end, &len) )
z->b_force_qp = 0;
else
{
x264_log( h, X264_LOG_ERROR, "invalid zone: \"%s\"\n", p );
return -1;
}
p += len;
if( !*p )
return 0;
CHECKED_MALLOC( z->param, sizeof(x264_param_t) );
memcpy( z->param, &h->param, sizeof(x264_param_t) );
z->param->opaque = NULL;
z->param->param_free = x264_free;
while( (tok = strtok_r( p, ",", &saveptr )) )
{
char *val = strchr( tok, '=' );
if( val )
{
*val = '\0';
val++;
}
if( x264_param_parse( z->param, tok, val ) )
{
x264_log( h, X264_LOG_ERROR, "invalid zone param: %s = %s\n", tok, val );
return -1;
}
p = NULL;
}
return 0;
fail:
return -1;
}
static int parse_zones( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
if( h->param.rc.psz_zones && !h->param.rc.i_zones )
{
char *psz_zones, *p;
CHECKED_MALLOC( psz_zones, strlen( h->param.rc.psz_zones )+1 );
strcpy( psz_zones, h->param.rc.psz_zones );
h->param.rc.i_zones = 1;
for( p = psz_zones; *p; p++ )
h->param.rc.i_zones += (*p == '/');
CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) );
p = psz_zones;
for( int i = 0; i < h->param.rc.i_zones; i++ )
{
int i_tok = strcspn( p, "/" );
p[i_tok] = 0;
if( parse_zone( h, &h->param.rc.zones[i], p ) )
{
x264_free( psz_zones );
return -1;
}
p += i_tok + 1;
}
x264_free( psz_zones );
}
if( h->param.rc.i_zones > 0 )
{
for( int i = 0; i < h->param.rc.i_zones; i++ )
{
x264_zone_t z = h->param.rc.zones[i];
if( z.i_start < 0 || z.i_start > z.i_end )
{
x264_log( h, X264_LOG_ERROR, "invalid zone: start=%d end=%d\n",
z.i_start, z.i_end );
return -1;
}
else if( !z.b_force_qp && z.f_bitrate_factor <= 0 )
{
x264_log( h, X264_LOG_ERROR, "invalid zone: bitrate_factor=%f\n",
z.f_bitrate_factor );
return -1;
}
}
rc->i_zones = h->param.rc.i_zones + 1;
CHECKED_MALLOC( rc->zones, rc->i_zones * sizeof(x264_zone_t) );
memcpy( rc->zones+1, h->param.rc.zones, (rc->i_zones-1) * sizeof(x264_zone_t) );
// default zone to fall back to if none of the others match
rc->zones[0].i_start = 0;
rc->zones[0].i_end = INT_MAX;
rc->zones[0].b_force_qp = 0;
rc->zones[0].f_bitrate_factor = 1;
CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) );
memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) );
rc->zones[0].param->opaque = NULL;
for( int i = 1; i < rc->i_zones; i++ )
{
if( !rc->zones[i].param )
rc->zones[i].param = rc->zones[0].param;
}
}
return 0;
fail:
return -1;
}
static x264_zone_t *get_zone( x264_t *h, int frame_num )
{
x264_ratecontrol_t *rc = h->rc;
for( int i = rc->i_zones - 1; i >= 0; i-- )
{
x264_zone_t *z = &rc->zones[i];
if( frame_num >= z->i_start && frame_num <= z->i_end )
return z;
}
return NULL;
}
void x264_ratecontrol_summary( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 )
{
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n",
qscale2qp( pow( base_cplx, 1 - rc->qcompress )
* rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset - QP_BD_OFFSET );
}
}
void x264_ratecontrol_delete( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
int b_regular_file;
if( rc->p_stat_file_out )
{
b_regular_file = x264_is_regular_file( rc->p_stat_file_out );
fclose( rc->p_stat_file_out );
if( h->i_frame >= rc->num_entries && b_regular_file )
if( x264_rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 )
{
x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out );
}
x264_free( rc->psz_stat_file_tmpname );
}
if( rc->p_mbtree_stat_file_out )
{
b_regular_file = x264_is_regular_file( rc->p_mbtree_stat_file_out );
fclose( rc->p_mbtree_stat_file_out );
if( h->i_frame >= rc->num_entries && b_regular_file )
if( x264_rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 )
{
x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name );
}
x264_free( rc->psz_mbtree_stat_file_tmpname );
x264_free( rc->psz_mbtree_stat_file_name );
}
if( rc->p_mbtree_stat_file_in )
fclose( rc->p_mbtree_stat_file_in );
x264_free( rc->pred );
x264_free( rc->pred_b_from_p );
x264_free( rc->entry );
x264_free( rc->entry_out );
macroblock_tree_rescale_destroy( rc );
if( rc->zones )
{
x264_param_cleanup( rc->zones[0].param );
x264_free( rc->zones[0].param );
for( int i = 1; i < rc->i_zones; i++ )
if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free )
{
x264_param_cleanup( rc->zones[i].param );
rc->zones[i].param->param_free( rc->zones[i].param );
}
x264_free( rc->zones );
}
x264_free( rc );
}
static void accum_p_qp_update( x264_t *h, float qp )
{
x264_ratecontrol_t *rc = h->rc;
rc->accum_p_qp *= .95;
rc->accum_p_norm *= .95;
rc->accum_p_norm += 1;
if( h->sh.i_type == SLICE_TYPE_I )
rc->accum_p_qp += qp + rc->ip_offset;
else
rc->accum_p_qp += qp;
}
void x264_ratecontrol_zone_init( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
x264_zone_t *zone = get_zone( h, h->fenc->i_frame );
if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) )
x264_encoder_reconfig_apply( h, zone->param );
rc->prev_zone = zone;
}
/* Before encoding a frame, choose a QP for it */
void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
{
x264_ratecontrol_t *rc = h->rc;
ratecontrol_entry_t *rce = NULL;
x264_zone_t *zone = get_zone( h, h->fenc->i_frame );
float q;
x264_emms();
if( h->param.rc.b_stat_read )
{
int frame = h->fenc->i_frame;
assert( frame >= 0 && frame < rc->num_entries );
rce = rc->rce = &rc->entry[frame];
if( h->sh.i_type == SLICE_TYPE_B
&& h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
{
h->sh.b_direct_spatial_mv_pred = ( rce->direct_mode == 's' );
h->mb.b_direct_auto_read = ( rce->direct_mode == 's' || rce->direct_mode == 't' );
}
}
if( rc->b_vbv )
{
memset( h->fdec->i_row_bits, 0, h->mb.i_mb_height * sizeof(int) );
memset( h->fdec->f_row_qp, 0, h->mb.i_mb_height * sizeof(float) );
memset( h->fdec->f_row_qscale, 0, h->mb.i_mb_height * sizeof(float) );
rc->row_pred = rc->row_preds[h->sh.i_type];
rc->buffer_rate = h->fenc->i_cpb_duration * rc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
update_vbv_plan( h, overhead );
const x264_level_t *l = x264_levels;
while( l->level_idc != 0 && l->level_idc != h->param.i_level_idc )
l++;
int mincr = l->mincr;
if( h->param.b_bluray_compat )
mincr = 4;
/* Profiles above High don't require minCR, so just set the maximum to a large value. */
if( h->sps->i_profile_idc > PROFILE_HIGH )
rc->frame_size_maximum = 1e9;
else
{
/* The spec has a bizarre special case for the first frame. */
if( h->i_frame == 0 )
{
//384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR
double fr = 1. / (h->param.i_level_idc >= 60 ? 300 : 172);
int pic_size_in_mbs = h->mb.i_mb_width * h->mb.i_mb_height;
rc->frame_size_maximum = 384 * BIT_DEPTH * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr;
}
else
{
//384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR
rc->frame_size_maximum = 384 * BIT_DEPTH * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr;
}
}
}
if( h->sh.i_type != SLICE_TYPE_B )
rc->bframes = h->fenc->i_bframes;
if( rc->b_abr )
{
q = qscale2qp( rate_estimate_qscale( h ) );
}
else if( rc->b_2pass )
{
rce->new_qscale = rate_estimate_qscale( h );
q = qscale2qp( rce->new_qscale );
}
else /* CQP */
{
if( h->sh.i_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref )
q = ( rc->qp_constant[ SLICE_TYPE_B ] + rc->qp_constant[ SLICE_TYPE_P ] ) / 2;
else
q = rc->qp_constant[ h->sh.i_type ];
if( zone )
{
if( zone->b_force_qp )
q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P];
else
q -= 6*log2f( zone->f_bitrate_factor );
}
}
if( i_force_qp != X264_QP_AUTO )
q = i_force_qp - 1;
q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
rc->qpa_rc = rc->qpa_rc_prev =
rc->qpa_aq = rc->qpa_aq_prev = 0;
h->fdec->f_qp_avg_rc =
h->fdec->f_qp_avg_aq =
rc->qpm = q;
if( rce )
rce->new_qp = q;
accum_p_qp_update( h, rc->qpm );
if( h->sh.i_type != SLICE_TYPE_B )
rc->last_non_b_pict_type = h->sh.i_type;
}
static float predict_row_size( x264_t *h, int y, float qscale )
{
/* average between two predictors:
* absolute SATD, and scaled bit cost of the colocated row in the previous frame */
x264_ratecontrol_t *rc = h->rc;
float pred_s = predict_size( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y] );
if( h->sh.i_type == SLICE_TYPE_I || qscale >= h->fref[0][0]->f_row_qscale[y] )
{
if( h->sh.i_type == SLICE_TYPE_P
&& h->fref[0][0]->i_type == h->fdec->i_type
&& h->fref[0][0]->f_row_qscale[y] > 0
&& h->fref[0][0]->i_row_satd[y] > 0
&& (abs(h->fref[0][0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
{
float pred_t = h->fref[0][0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref[0][0]->i_row_satd[y]
* h->fref[0][0]->f_row_qscale[y] / qscale;
return (pred_s + pred_t) * 0.5f;
}
return pred_s;
}
/* Our QP is lower than the reference! */
else
{
float pred_intra = predict_size( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y] );
/* Sum: better to overestimate than underestimate by using only one of the two predictors. */
return pred_intra + pred_s;
}
}
static int row_bits_so_far( x264_t *h, int y )
{
int bits = 0;
for( int i = h->i_threadslice_start; i <= y; i++ )
bits += h->fdec->i_row_bits[i];
return bits;
}
static float predict_row_size_to_end( x264_t *h, int y, float qp )
{
float qscale = qp2qscale( qp );
float bits = 0;
for( int i = y+1; i < h->i_threadslice_end; i++ )
bits += predict_row_size( h, i, qscale );
return bits;
}
/* TODO:
* eliminate all use of qp in row ratecontrol: make it entirely qscale-based.
* make this function stop being needlessly O(N^2)
* update more often than once per row? */
int x264_ratecontrol_mb( x264_t *h, int bits )
{
x264_ratecontrol_t *rc = h->rc;
const int y = h->mb.i_mb_y;
h->fdec->i_row_bits[y] += bits;
rc->qpa_aq += h->mb.i_qp;
if( h->mb.i_mb_x != h->mb.i_mb_width - 1 )
return 0;
x264_emms();
rc->qpa_rc += rc->qpm * h->mb.i_mb_width;
if( !rc->b_vbv )
return 0;
float qscale = qp2qscale( rc->qpm );
h->fdec->f_row_qp[y] = rc->qpm;
h->fdec->f_row_qscale[y] = qscale;
update_predictor( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
if( h->sh.i_type != SLICE_TYPE_I && rc->qpm < h->fref[0][0]->f_row_qp[y] )
update_predictor( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
/* update ratecontrol per-mbpair in MBAFF */
if( SLICE_MBAFF && !(y&1) )
return 0;
/* FIXME: We don't currently support the case where there's a slice
* boundary in between. */
int can_reencode_row = h->sh.i_first_mb <= ((h->mb.i_mb_y - SLICE_MBAFF) * h->mb.i_mb_stride);
/* tweak quality based on difference from predicted size */
float prev_row_qp = h->fdec->f_row_qp[y];
float qp_absolute_max = h->param.rc.i_qp_max;
if( rc->rate_factor_max_increment )
qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment );
float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max );
float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
float step_size = 0.5f;
float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned;
float bits_so_far = row_bits_so_far( h, y );
rc->bits_so_far = bits_so_far;
float max_frame_error = x264_clip3f( 1.0 / h->mb.i_mb_height, 0.05, 0.25 );
float max_frame_size = rc->frame_size_maximum - rc->frame_size_maximum * max_frame_error;
max_frame_size = X264_MIN( max_frame_size, rc->buffer_fill - rc->buffer_rate * max_frame_error );
float size_of_other_slices = 0;
if( h->param.b_sliced_threads )
{
float bits_so_far_of_other_slices = 0;
for( int i = 0; i < h->param.i_threads; i++ )
if( h != h->thread[i] )
{
size_of_other_slices += h->thread[i]->rc->frame_size_estimated;
bits_so_far_of_other_slices += h->thread[i]->rc->bits_so_far;
}
float weight = x264_clip3f( (bits_so_far_of_other_slices + rc->frame_size_estimated) / (size_of_other_slices + rc->frame_size_estimated), 0.0, 1.0 );
float frame_size_planned = rc->frame_size_planned - rc->frame_size_planned * max_frame_error;
float size_of_other_slices_planned = X264_MIN( frame_size_planned, max_frame_size ) - rc->slice_size_planned;
size_of_other_slices_planned = X264_MAX( size_of_other_slices_planned, bits_so_far_of_other_slices );
size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned;
}
if( y < h->i_threadslice_end-1 )
{
/* B-frames shouldn't use lower QP than their reference frames. */
if( h->sh.i_type == SLICE_TYPE_B )
{
qp_min = X264_MAX( qp_min, X264_MAX( h->fref[0][0]->f_row_qp[y+1], h->fref[1][0]->f_row_qp[y+1] ) );
rc->qpm = X264_MAX( rc->qpm, qp_min );
}
float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
buffer_left_planned = X264_MAX( buffer_left_planned, 0.f );
/* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */
float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance;
float b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
float trust_coeff = x264_clip3f( bits_so_far / slice_size_planned, 0.0, 1.0 );
/* Don't increase the row QPs until a sufficient amount of the bits of the frame have been processed, in case a flat */
/* area at the top of the frame was measured inaccurately. */
if( trust_coeff < 0.05f )
qp_max = qp_absolute_max = prev_row_qp;
if( h->sh.i_type != SLICE_TYPE_I )
rc_tol *= 0.5f;
if( !rc->b_vbv_min_rate )
qp_min = X264_MAX( qp_min, rc->qp_novbv );
while( rc->qpm < qp_max
&& ((b1 > rc->frame_size_planned + rc_tol) ||
(b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv) ||
(b1 > rc->buffer_fill - buffer_left_planned * 0.5f)) )
{
rc->qpm += step_size;
b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
}
float b_max = b1 + ((rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 0.90f - b1) * trust_coeff;
rc->qpm -= step_size;
float b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
while( rc->qpm > qp_min && rc->qpm < prev_row_qp
&& (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv)
&& (b2 < max_frame_size)
&& ((b2 < rc->frame_size_planned * 0.8f) || (b2 < b_max)) )
{
b1 = b2;
rc->qpm -= step_size;
b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
}
rc->qpm += step_size;
/* avoid VBV underflow or MinCR violation */
while( rc->qpm < qp_absolute_max && (b1 > max_frame_size) )
{
rc->qpm += step_size;
b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
}
rc->frame_size_estimated = b1 - size_of_other_slices;
/* If the current row was large enough to cause a large QP jump, try re-encoding it. */
if( rc->qpm > qp_max && prev_row_qp < qp_max && can_reencode_row )
{
/* Bump QP to halfway in between... close enough. */
rc->qpm = x264_clip3f( (prev_row_qp + rc->qpm)*0.5f, prev_row_qp + 1.0f, qp_max );
rc->qpa_rc = rc->qpa_rc_prev;
rc->qpa_aq = rc->qpa_aq_prev;
h->fdec->i_row_bits[y] = 0;
h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;
return -1;
}
}
else
{
rc->frame_size_estimated = bits_so_far;
/* Last-ditch attempt: if the last row of the frame underflowed the VBV,
* try again. */
if( rc->qpm < qp_max && can_reencode_row
&& (bits_so_far + size_of_other_slices > X264_MIN( rc->frame_size_maximum, rc->buffer_fill )) )
{
rc->qpm = qp_max;
rc->qpa_rc = rc->qpa_rc_prev;
rc->qpa_aq = rc->qpa_aq_prev;
h->fdec->i_row_bits[y] = 0;
h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;
return -1;
}
}
rc->qpa_rc_prev = rc->qpa_rc;
rc->qpa_aq_prev = rc->qpa_aq;
return 0;
}
int x264_ratecontrol_qp( x264_t *h )
{
x264_emms();
return x264_clip3( h->rc->qpm + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
}
int x264_ratecontrol_mb_qp( x264_t *h )
{
x264_emms();
float qp = h->rc->qpm;
if( h->param.rc.i_aq_mode )
{
/* MB-tree currently doesn't adjust quantizers in unreferenced frames. */
float qp_offset = h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy];
/* Scale AQ's effect towards zero in emergency mode. */
if( qp > QP_MAX_SPEC )
qp_offset *= (QP_MAX - qp) / (QP_MAX - QP_MAX_SPEC);
qp += qp_offset;
}
return x264_clip3( qp + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
}
/* In 2pass, force the same frame types as in the 1st pass */
int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
{
x264_ratecontrol_t *rc = h->rc;
if( h->param.rc.b_stat_read )
{
if( frame_num >= rc->num_entries )
{
/* We could try to initialize everything required for ABR and
* adaptive B-frames, but that would be complicated.
* So just calculate the average QP used so far. */
h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + QP_BD_OFFSET
: 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P];
rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, QP_MAX );
rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / h->param.rc.f_ip_factor ) + 0.5 ), 0, QP_MAX );
rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * h->param.rc.f_pb_factor ) + 0.5 ), 0, QP_MAX );
x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries );
x264_log( h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant );
if( h->param.i_bframe_adaptive )
x264_log( h, X264_LOG_ERROR, "disabling adaptive B-frames\n" );
for( int i = 0; i < h->param.i_threads; i++ )
{
h->thread[i]->rc->b_abr = 0;
h->thread[i]->rc->b_2pass = 0;
h->thread[i]->param.rc.i_rc_method = X264_RC_CQP;
h->thread[i]->param.rc.b_stat_read = 0;
h->thread[i]->param.i_bframe_adaptive = 0;
h->thread[i]->param.i_scenecut_threshold = 0;
h->thread[i]->param.rc.b_mb_tree = 0;
if( h->thread[i]->param.i_bframe > 1 )
h->thread[i]->param.i_bframe = 1;
}
return X264_TYPE_AUTO;
}
return rc->entry[frame_num].frame_type;
}
else
return X264_TYPE_AUTO;
}
void x264_ratecontrol_set_weights( x264_t *h, x264_frame_t *frm )
{
ratecontrol_entry_t *rce = &h->rc->entry[frm->i_frame];
if( h->param.analyse.i_weighted_pred <= 0 )
return;
if( rce->i_weight_denom[0] >= 0 )
SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0][0], rce->i_weight_denom[0], rce->weight[0][1] );
if( rce->i_weight_denom[1] >= 0 )
{
SET_WEIGHT( frm->weight[0][1], 1, rce->weight[1][0], rce->i_weight_denom[1], rce->weight[1][1] );
SET_WEIGHT( frm->weight[0][2], 1, rce->weight[2][0], rce->i_weight_denom[1], rce->weight[2][1] );
}
}
/* After encoding one frame, save stats and update ratecontrol state */
int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
{
x264_ratecontrol_t *rc = h->rc;
const int *mbs = h->stat.frame.i_mb_count;
x264_emms();
h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP];
h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4] + mbs[I_PCM];
h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8];
for( int i = B_DIRECT; i <= B_8x8; i++ )
h->stat.frame.i_mb_count_p += mbs[i];
h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
h->fdec->f_qp_avg_aq = (float)rc->qpa_aq / h->mb.i_mb_count;
h->fdec->f_crf_avg = h->param.rc.f_rf_constant + h->fdec->f_qp_avg_rc - rc->qp_novbv;
if( h->param.rc.b_stat_write )
{
char c_type = h->sh.i_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i')
: h->sh.i_type==SLICE_TYPE_P ? 'P'
: h->fenc->b_kept_as_ref ? 'B' : 'b';
int dir_frame = h->stat.frame.i_direct_score[1] - h->stat.frame.i_direct_score[0];
int dir_avg = h->stat.i_direct_score[1] - h->stat.i_direct_score[0];
char c_direct = h->mb.b_direct_auto_write ?
( dir_frame>0 ? 's' : dir_frame<0 ? 't' :
dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
: '-';
if( fprintf( rc->p_stat_file_out,
"in:%d out:%d type:%c dur:%"PRId64" cpbdur:%"PRId64" q:%.2f aq:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
h->fenc->i_frame, h->i_frame,
c_type, h->fenc->i_duration,
h->fenc->i_cpb_duration,
rc->qpa_rc, h->fdec->f_qp_avg_aq,
h->stat.frame.i_tex_bits,
h->stat.frame.i_mv_bits,
h->stat.frame.i_misc_bits,
h->stat.frame.i_mb_count_i,
h->stat.frame.i_mb_count_p,
h->stat.frame.i_mb_count_skip,
c_direct) < 0 )
goto fail;
/* Only write information for reference reordering once. */
int use_old_stats = h->param.rc.b_stat_read && rc->rce->refs > 1;
for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref[0]); i++ )
{
int refcount = use_old_stats ? rc->rce->refcount[i]
: PARAM_INTERLACED ? h->stat.frame.i_mb_count_ref[0][i*2]
+ h->stat.frame.i_mb_count_ref[0][i*2+1]
: h->stat.frame.i_mb_count_ref[0][i];
if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 )
goto fail;
}
if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->sh.weight[0][0].weightfn )
{
if( fprintf( rc->p_stat_file_out, "w:%d,%d,%d",
h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 )
goto fail;
if( h->sh.weight[0][1].weightfn || h->sh.weight[0][2].weightfn )
{
if( fprintf( rc->p_stat_file_out, ",%d,%d,%d,%d,%d ",
h->sh.weight[0][1].i_denom, h->sh.weight[0][1].i_scale, h->sh.weight[0][1].i_offset,
h->sh.weight[0][2].i_scale, h->sh.weight[0][2].i_offset ) < 0 )
goto fail;
}
else if( fprintf( rc->p_stat_file_out, " " ) < 0 )
goto fail;
}
if( fprintf( rc->p_stat_file_out, ";\n") < 0 )
goto fail;
/* Don't re-write the data in multi-pass mode. */
if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read )
{
uint8_t i_type = h->sh.i_type;
h->mc.mbtree_fix8_pack( rc->mbtree.qp_buffer[0], h->fenc->f_qp_offset, h->mb.i_mb_count );
if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 )
goto fail;
if( fwrite( rc->mbtree.qp_buffer[0], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < (unsigned)h->mb.i_mb_count )
goto fail;
}
}
if( rc->b_abr )
{
if( h->sh.i_type != SLICE_TYPE_B )
rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / rc->last_rceq;
else
{
/* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
* Not perfectly accurate with B-refs, but good enough. */
rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / (rc->last_rceq * h->param.rc.f_pb_factor);
}
rc->cplxr_sum *= rc->cbr_decay;
rc->wanted_bits_window += h->fenc->f_duration * rc->bitrate;
rc->wanted_bits_window *= rc->cbr_decay;
}
if( rc->b_2pass )
rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale( rc->rce->new_qp ) );
if( h->mb.b_variable_qp )
{
if( h->sh.i_type == SLICE_TYPE_B )
{
rc->bframe_bits += bits;
if( h->fenc->b_last_minigop_bframe )
{
update_predictor( rc->pred_b_from_p, qp2qscale( rc->qpa_rc ),
h->fref[1][h->i_ref[1]-1]->i_satd, rc->bframe_bits / rc->bframes );
rc->bframe_bits = 0;
}
}
}
*filler = update_vbv( h, bits );
rc->filler_bits_sum += *filler * 8;
if( h->sps->vui.b_nal_hrd_parameters_present )
{
if( h->fenc->i_frame == 0 )
{
// access unit initialises the HRD
h->fenc->hrd_timing.cpb_initial_arrival_time = 0;
rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit = (double)rc->initial_cpb_removal_delay / 90000;
}
else
{
h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)(h->fenc->i_cpb_delay - h->i_cpb_delay_pir_offset) *
h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
if( h->fenc->b_keyframe )
{
rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time;
rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
}
double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000;
if( !h->fenc->b_keyframe )
cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000;
if( h->sps->vui.hrd.b_cbr_hrd )
h->fenc->hrd_timing.cpb_initial_arrival_time = rc->previous_cpb_final_arrival_time;
else
h->fenc->hrd_timing.cpb_initial_arrival_time = X264_MAX( rc->previous_cpb_final_arrival_time, cpb_earliest_arrival_time );
}
int filler_bits = *filler ? X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), *filler )*8 : 0;
// Equation C-6
h->fenc->hrd_timing.cpb_final_arrival_time = rc->previous_cpb_final_arrival_time = h->fenc->hrd_timing.cpb_initial_arrival_time +
(double)(bits + filler_bits) / h->sps->vui.hrd.i_bit_rate_unscaled;
h->fenc->hrd_timing.dpb_output_time = (double)h->fenc->i_dpb_output_delay * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale +
h->fenc->hrd_timing.cpb_removal_time;
}
return 0;
fail:
x264_log( h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n" );
return -1;
}
/****************************************************************************
* 2 pass functions
***************************************************************************/
/**
* modify the bitrate curve from pass1 for one frame
*/
static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num)
{
x264_ratecontrol_t *rcc= h->rc;
x264_zone_t *zone = get_zone( h, frame_num );
double q;
if( h->param.rc.b_mb_tree )
{
double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
q = pow( BASE_FRAME_DURATION / CLIP_DURATION(rce->i_duration * timescale), 1 - h->param.rc.f_qcompress );
}
else
q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
// avoid NaN's in the rc_eq
if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 )
q = rcc->last_qscale_for[rce->pict_type];
else
{
rcc->last_rceq = q;
q /= rate_factor;
rcc->last_qscale = q;
}
if( zone )
{
if( zone->b_force_qp )
q = qp2qscale( zone->i_qp );
else
q /= zone->f_bitrate_factor;
}
return q;
}
static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q, int frame_num)
{
x264_ratecontrol_t *rcc = h->rc;
const int pict_type = rce->pict_type;
x264_zone_t *zone = get_zone( h, frame_num );
// force I/B quants as a function of P quants
if( pict_type == SLICE_TYPE_I )
{
double iq = q;
double pq = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
double ip_factor = h->param.rc.f_ip_factor;
/* don't apply ip_factor if the following frame is also I */
if( rcc->accum_p_norm <= 0 )
q = iq;
else if( rcc->accum_p_norm >= 1 )
q = pq / ip_factor;
else
q = rcc->accum_p_norm * pq / ip_factor + (1 - rcc->accum_p_norm) * iq;
}
else if( pict_type == SLICE_TYPE_B )
{
q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
if( !rce->kept_as_ref )
q *= h->param.rc.f_pb_factor;
}
else if( pict_type == SLICE_TYPE_P
&& rcc->last_non_b_pict_type == SLICE_TYPE_P
&& rce->tex_bits == 0 )
{
q = rcc->last_qscale_for[SLICE_TYPE_P];
}
/* last qscale / qdiff stuff */
if( rcc->last_non_b_pict_type == pict_type &&
(pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1) )
{
double last_q = rcc->last_qscale_for[pict_type];
double max_qscale = last_q * rcc->lstep;
double min_qscale = last_q / rcc->lstep;
if ( q > max_qscale ) q = max_qscale;
else if( q < min_qscale ) q = min_qscale;
}
rcc->last_qscale_for[pict_type] = q;
if( pict_type != SLICE_TYPE_B )
rcc->last_non_b_pict_type = pict_type;
if( pict_type == SLICE_TYPE_I )
{
rcc->last_accum_p_norm = rcc->accum_p_norm;
rcc->accum_p_norm = 0;
rcc->accum_p_qp = 0;
}
if( pict_type == SLICE_TYPE_P )
{
float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 );
rcc->accum_p_qp = mask * (qscale2qp( q ) + rcc->accum_p_qp);
rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm);
}
if( zone )
{
if( zone->b_force_qp )
q = qp2qscale( zone->i_qp );
else
q /= zone->f_bitrate_factor;
}
return q;
}
static float predict_size( predictor_t *p, float q, float var )
{
return (p->coeff*var + p->offset) / (q*p->count);
}
static void update_predictor( predictor_t *p, float q, float var, float bits )
{
float range = 1.5;
if( var < 10 )
return;
float old_coeff = p->coeff / p->count;
float old_offset = p->offset / p->count;
float new_coeff = X264_MAX( (bits*q - old_offset) / var, p->coeff_min );
float new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
float new_offset = bits*q - new_coeff_clipped * var;
if( new_offset >= 0 )
new_coeff = new_coeff_clipped;
else
new_offset = 0;
p->count *= p->decay;
p->coeff *= p->decay;
p->offset *= p->decay;
p->count ++;
p->coeff += new_coeff;
p->offset += new_offset;
}
// update VBV after encoding a frame
static int update_vbv( x264_t *h, int bits )
{
int filler = 0;
int bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
x264_ratecontrol_t *rcc = h->rc;
x264_ratecontrol_t *rct = h->thread[0]->rc;
int64_t buffer_size = (int64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
if( rcc->last_satd >= h->mb.i_mb_count )
update_predictor( &rct->pred[h->sh.i_type], qp2qscale( rcc->qpa_rc ), rcc->last_satd, bits );
if( !rcc->b_vbv )
return filler;
uint64_t buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale;
rct->buffer_fill_final -= buffer_diff;
rct->buffer_fill_final_min -= buffer_diff;
if( rct->buffer_fill_final_min < 0 )
{
double underflow = (double)rct->buffer_fill_final_min / h->sps->vui.i_time_scale;
if( rcc->rate_factor_max_increment && rcc->qpm >= rcc->qp_novbv + rcc->rate_factor_max_increment )
x264_log( h, X264_LOG_DEBUG, "VBV underflow due to CRF-max (frame %d, %.0f bits)\n", h->i_frame, underflow );
else
x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, underflow );
rct->buffer_fill_final =
rct->buffer_fill_final_min = 0;
}
if( h->param.i_avcintra_class )
buffer_diff = buffer_size;
else
buffer_diff = (uint64_t)bitrate * h->sps->vui.i_num_units_in_tick * h->fenc->i_cpb_duration;
rct->buffer_fill_final += buffer_diff;
rct->buffer_fill_final_min += buffer_diff;
if( rct->buffer_fill_final > buffer_size )
{
if( h->param.rc.b_filler )
{
int64_t scale = (int64_t)h->sps->vui.i_time_scale * 8;
filler = (rct->buffer_fill_final - buffer_size + scale - 1) / scale;
bits = h->param.i_avcintra_class ? filler * 8 : X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8;
buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale;
rct->buffer_fill_final -= buffer_diff;
rct->buffer_fill_final_min -= buffer_diff;
}
else
{
rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, buffer_size );
rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, buffer_size );
}
}
return filler;
}
void x264_hrd_fullness( x264_t *h )
{
x264_ratecontrol_t *rct = h->thread[0]->rc;
uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale / rct->hrd_multiply_denom;
uint64_t cpb_state = rct->buffer_fill_final;
uint64_t cpb_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
uint64_t multiply_factor = 90000 / rct->hrd_multiply_denom;
if( rct->buffer_fill_final < 0 || rct->buffer_fill_final > (int64_t)cpb_size )
{
x264_log( h, X264_LOG_WARNING, "CPB %s: %.0f bits in a %.0f-bit buffer\n",
rct->buffer_fill_final < 0 ? "underflow" : "overflow",
(double)rct->buffer_fill_final / h->sps->vui.i_time_scale, (double)cpb_size / h->sps->vui.i_time_scale );
}
h->initial_cpb_removal_delay = (multiply_factor * cpb_state) / denom;
h->initial_cpb_removal_delay_offset = (multiply_factor * cpb_size) / denom - h->initial_cpb_removal_delay;
int64_t decoder_buffer_fill = h->initial_cpb_removal_delay * denom / multiply_factor;
rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, decoder_buffer_fill );
}
// provisionally update VBV according to the planned size of all frames currently in progress
static void update_vbv_plan( x264_t *h, int overhead )
{
x264_ratecontrol_t *rcc = h->rc;
rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final_min / h->sps->vui.i_time_scale;
if( h->i_thread_frames > 1 )
{
int j = rcc - h->thread[0]->rc;
for( int i = 1; i < h->i_thread_frames; i++ )
{
x264_t *t = h->thread[ (j+i)%h->i_thread_frames ];
double bits = t->rc->frame_size_planned;
if( !t->b_thread_active )
continue;
bits = X264_MAX(bits, t->rc->frame_size_estimated);
rcc->buffer_fill -= bits;
rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 );
rcc->buffer_fill += t->rc->buffer_rate;
rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
}
}
rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
rcc->buffer_fill -= overhead;
}
// clip qscale to between lmin and lmax
static double clip_qscale( x264_t *h, int pict_type, double q )
{
x264_ratecontrol_t *rcc = h->rc;
double lmin = rcc->lmin[pict_type];
double lmax = rcc->lmax[pict_type];
if( rcc->rate_factor_max_increment )
lmax = X264_MIN( lmax, qp2qscale( rcc->qp_novbv + rcc->rate_factor_max_increment ) );
if( lmin==lmax )
return lmin;
else if( rcc->b_2pass )
{
double min2 = log( lmin );
double max2 = log( lmax );
q = (log(q) - min2)/(max2-min2) - 0.5;
q = 1.0/(1.0 + exp( -4*q ));
q = q*(max2-min2) + min2;
return exp( q );
}
else
return x264_clip3f( q, lmin, lmax );
}
// apply VBV constraints
static double vbv_pass1( x264_t *h, int pict_type, double q )
{
x264_ratecontrol_t *rcc = h->rc;
/* B-frames are not directly subject to VBV,
* since they are controlled by the P-frames' QPs. */
if( rcc->b_vbv && rcc->last_satd > 0 )
{
double q0 = q;
double fenc_cpb_duration = (double)h->fenc->i_cpb_duration *
h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
/* Lookahead VBV: raise the quantizer as necessary such that no frames in
* the lookahead overflow and such that the buffer is in a reasonable state
* by the end of the lookahead. */
if( h->param.rc.i_lookahead )
{
int terminate = 0;
/* Avoid an infinite loop. */
for( int iterations = 0; iterations < 1000 && terminate != 3; iterations++ )
{
double frame_q[3];
double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
double buffer_fill_cur = rcc->buffer_fill - cur_bits;
double target_fill;
double total_duration = 0;
double last_duration = fenc_cpb_duration;
frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q;
frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor;
frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor;
/* Loop over the planned future frames. */
for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ )
{
total_duration += last_duration;
buffer_fill_cur += rcc->vbv_max_rate * last_duration;
int i_type = h->fenc->i_planned_type[j];
int i_satd = h->fenc->i_planned_satd[j];
if( i_type == X264_TYPE_AUTO )
break;
i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P;
cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd );
buffer_fill_cur -= cur_bits;
last_duration = h->fenc->f_planned_cpb_duration[j];
}
/* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */
target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 );
if( buffer_fill_cur < target_fill )
{
q *= 1.01;
terminate |= 1;
continue;
}
/* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */
target_fill = x264_clip3f( rcc->buffer_fill - total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size );
if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill )
{
q /= 1.01;
terminate |= 2;
continue;
}
break;
}
}
/* Fallback to old purely-reactive algorithm: no lookahead. */
else
{
if( ( pict_type == SLICE_TYPE_P ||
( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) &&
rcc->buffer_fill/rcc->buffer_size < 0.5 )
{
q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
}
/* Now a hard threshold to make sure the frame fits in VBV.
* This one is mostly for I-frames. */
double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
/* For small VBVs, allow the frame to use up the entire VBV. */
double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1;
/* For single-frame VBVs, request that the frame use up the entire VBV. */
double min_fill_factor = rcc->single_frame_vbv ? 1 : 2;
if( bits > rcc->buffer_fill/max_fill_factor )
{
double qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 );
q /= qf;
bits *= qf;
}
if( bits < rcc->buffer_rate/min_fill_factor )
{
double qf = x264_clip3f( bits*min_fill_factor/rcc->buffer_rate, 0.001, 1.0 );
q *= qf;
}
q = X264_MAX( q0, q );
}
/* Check B-frame complexity, and use up any bits that would
* overflow before the next P-frame. */
if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv )
{
int nb = rcc->bframes;
double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
double pbbits = bits;
double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
double space;
double bframe_cpb_duration = 0;
double minigop_cpb_duration;
for( int i = 0; i < nb; i++ )
bframe_cpb_duration += h->fenc->f_planned_cpb_duration[i];
if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate )
{
nb = 0;
bframe_cpb_duration = 0;
}
pbbits += nb * bbits;
minigop_cpb_duration = bframe_cpb_duration + fenc_cpb_duration;
space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size;
if( pbbits < space )
{
q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) );
}
q = X264_MAX( q0/2, q );
}
if( !rcc->b_vbv_min_rate )
q = X264_MAX( q0, q );
}
return clip_qscale( h, pict_type, q );
}
// update qscale for 1 frame based on actual bits used so far
static float rate_estimate_qscale( x264_t *h )
{
float q;
x264_ratecontrol_t *rcc = h->rc;
ratecontrol_entry_t rce = {0};
int pict_type = h->sh.i_type;
int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I]
+ h->stat.i_frame_size[SLICE_TYPE_P]
+ h->stat.i_frame_size[SLICE_TYPE_B])
- rcc->filler_bits_sum;
if( rcc->b_2pass )
{
rce = *rcc->rce;
if( pict_type != rce.pict_type )
{
x264_log( h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n",
slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type] );
}
}
if( pict_type == SLICE_TYPE_B )
{
/* B-frames don't have independent ratecontrol, but rather get the
* average QP of the two adjacent P-frames + an offset */
int i0 = IS_X264_TYPE_I(h->fref_nearest[0]->i_type);
int i1 = IS_X264_TYPE_I(h->fref_nearest[1]->i_type);
int dt0 = abs(h->fenc->i_poc - h->fref_nearest[0]->i_poc);
int dt1 = abs(h->fenc->i_poc - h->fref_nearest[1]->i_poc);
float q0 = h->fref_nearest[0]->f_qp_avg_rc;
float q1 = h->fref_nearest[1]->f_qp_avg_rc;
if( h->fref_nearest[0]->i_type == X264_TYPE_BREF )
q0 -= rcc->pb_offset/2;
if( h->fref_nearest[1]->i_type == X264_TYPE_BREF )
q1 -= rcc->pb_offset/2;
if( i0 && i1 )
q = (q0 + q1) / 2 + rcc->ip_offset;
else if( i0 )
q = q1;
else if( i1 )
q = q0;
else
q = (q0*dt1 + q1*dt0) / (dt0 + dt1);
if( h->fenc->b_kept_as_ref )
q += rcc->pb_offset/2;
else
q += rcc->pb_offset;
rcc->qp_novbv = q;
q = qp2qscale( q );
if( rcc->b_2pass )
rcc->frame_size_planned = qscale2bits( &rce, q );
else
rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref[1][h->i_ref[1]-1]->i_satd );
/* Apply MinCR and buffer fill restrictions */
if( rcc->b_vbv )
{
double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) );
if( rcc->frame_size_planned > frame_size_maximum )
{
q *= rcc->frame_size_planned / frame_size_maximum;
rcc->frame_size_planned = frame_size_maximum;
}
}
rcc->frame_size_estimated = rcc->frame_size_planned;
/* For row SATDs */
if( rcc->b_vbv )
rcc->last_satd = x264_rc_analyse_slice( h );
return q;
}
else
{
double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate;
double predicted_bits = total_bits;
if( h->i_thread_frames > 1 )
{
int j = rcc - h->thread[0]->rc;
for( int i = 1; i < h->i_thread_frames; i++ )
{
x264_t *t = h->thread[(j+i) % h->i_thread_frames];
double bits = t->rc->frame_size_planned;
if( !t->b_thread_active )
continue;
bits = X264_MAX(bits, t->rc->frame_size_estimated);
predicted_bits += bits;
}
}
if( rcc->b_2pass )
{
double lmin = rcc->lmin[pict_type];
double lmax = rcc->lmax[pict_type];
double diff;
/* Adjust ABR buffer based on distance to the end of the video. */
if( rcc->num_entries > h->i_frame )
{
double final_bits = rcc->entry_out[rcc->num_entries-1]->expected_bits;
double video_pos = rce.expected_bits / final_bits;
double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries );
abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 );
}
diff = predicted_bits - rce.expected_bits;
q = rce.new_qscale;
q /= x264_clip3f((abr_buffer - diff) / abr_buffer, .5, 2);
if( h->i_frame >= rcc->fps && rcc->expected_bits_sum >= 1 )
{
/* Adjust quant based on the difference between
* achieved and expected bitrate so far */
double cur_time = (double)h->i_frame / rcc->num_entries;
double w = x264_clip3f( cur_time*100, 0.0, 1.0 );
q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
}
rcc->qp_novbv = qscale2qp( q );
if( rcc->b_vbv )
{
/* Do not overflow vbv */
double expected_size = qscale2bits( &rce, q );
double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
double expected_fullness = rce.expected_vbv / rcc->buffer_size;
double qmax = q*(2 - expected_fullness);
double size_constraint = 1 + expected_fullness;
qmax = X264_MAX( qmax, rce.new_qscale );
if( expected_fullness < .05 )
qmax = lmax;
qmax = X264_MIN(qmax, lmax);
while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) ||
((expected_vbv < 0) && (q < lmax)))
{
q *= 1.05;
expected_size = qscale2bits(&rce, q);
expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
}
rcc->last_satd = x264_rc_analyse_slice( h );
}
q = x264_clip3f( q, lmin, lmax );
}
else /* 1pass ABR */
{
/* Calculate the quantizer which would have produced the desired
* average bitrate if it had been applied to all frames so far.
* Then modulate that quant based on the current frame's complexity
* relative to the average complexity so far (using the 2pass RCEQ).
* Then bias the quant up or down if total size so far was far from
* the target.
* Result: Depending on the value of rate_tolerance, there is a
* tradeoff between quality and bitrate precision. But at large
* tolerances, the bit distribution approaches that of 2pass. */
double wanted_bits, overflow = 1;
rcc->last_satd = x264_rc_analyse_slice( h );
rcc->short_term_cplxsum *= 0.5;
rcc->short_term_cplxcount *= 0.5;
rcc->short_term_cplxsum += rcc->last_satd / (CLIP_DURATION(h->fenc->f_duration) / BASE_FRAME_DURATION);
rcc->short_term_cplxcount ++;
rce.tex_bits = rcc->last_satd;
rce.blurred_complexity = rcc->short_term_cplxsum / rcc->short_term_cplxcount;
rce.mv_bits = 0;
rce.p_count = rcc->nmb;
rce.i_count = 0;
rce.s_count = 0;
rce.qscale = 1;
rce.pict_type = pict_type;
rce.i_duration = h->fenc->i_duration;
if( h->param.rc.i_rc_method == X264_RC_CRF )
{
q = get_qscale( h, &rce, rcc->rate_factor_constant, h->fenc->i_frame );
}
else
{
q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame );
/* ABR code can potentially be counterproductive in CBR, so just don't bother.
* Don't run it if the frame complexity is zero either. */
if( !rcc->b_vbv_min_rate && rcc->last_satd )
{
// FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
int i_frame_done = h->i_frame;
double time_done = i_frame_done / rcc->fps;
if( h->param.b_vfr_input && i_frame_done > 0 )
time_done = ((double)(h->fenc->i_reordered_pts - h->i_reordered_pts_delay)) * h->param.i_timebase_num / h->param.i_timebase_den;
wanted_bits = time_done * rcc->bitrate;
if( wanted_bits > 0 )
{
abr_buffer *= X264_MAX( 1, sqrt( time_done ) );
overflow = x264_clip3f( 1.0 + (predicted_bits - wanted_bits) / abr_buffer, .5, 2 );
q *= overflow;
}
}
}
if( pict_type == SLICE_TYPE_I && h->param.i_keyint_max > 1
/* should test _next_ pict type, but that isn't decided yet */
&& rcc->last_non_b_pict_type != SLICE_TYPE_I )
{
q = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
q /= h->param.rc.f_ip_factor;
}
else if( h->i_frame > 0 )
{
if( h->param.rc.i_rc_method != X264_RC_CRF )
{
/* Asymmetric clipping, because symmetric would prevent
* overflow control in areas of rapidly oscillating complexity */
double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
if( overflow > 1.1 && h->i_frame > 3 )
lmax *= rcc->lstep;
else if( overflow < 0.9 )
lmin /= rcc->lstep;
q = x264_clip3f(q, lmin, lmax);
}
}
else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 )
{
q = qp2qscale( ABR_INIT_QP ) / h->param.rc.f_ip_factor;
}
rcc->qp_novbv = qscale2qp( q );
q = vbv_pass1( h, pict_type, q );
}
rcc->last_qscale_for[pict_type] =
rcc->last_qscale = q;
if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 )
rcc->last_qscale_for[SLICE_TYPE_P] = q * h->param.rc.f_ip_factor;
if( rcc->b_2pass )
rcc->frame_size_planned = qscale2bits( &rce, q );
else
rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
/* Apply MinCR and buffer fill restrictions */
if( rcc->b_vbv )
{
double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) );
if( rcc->frame_size_planned > frame_size_maximum )
{
q *= rcc->frame_size_planned / frame_size_maximum;
rcc->frame_size_planned = frame_size_maximum;
}
/* Always use up the whole VBV in this case. */
if( rcc->single_frame_vbv )
rcc->frame_size_planned = X264_MIN( rcc->buffer_rate, frame_size_maximum );
}
rcc->frame_size_estimated = rcc->frame_size_planned;
return q;
}
}
static void threads_normalize_predictors( x264_t *h )
{
double totalsize = 0;
for( int i = 0; i < h->param.i_threads; i++ )
totalsize += h->thread[i]->rc->slice_size_planned;
double factor = h->rc->frame_size_planned / totalsize;
for( int i = 0; i < h->param.i_threads; i++ )
h->thread[i]->rc->slice_size_planned *= factor;
}
void x264_threads_distribute_ratecontrol( x264_t *h )
{
int row;
x264_ratecontrol_t *rc = h->rc;
x264_emms();
float qscale = qp2qscale( rc->qpm );
/* Initialize row predictors */
if( h->i_frame == 0 )
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
if( t != h )
memcpy( t->rc->row_preds, rc->row_preds, sizeof(rc->row_preds) );
}
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
if( t != h )
memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) );
t->rc->row_pred = t->rc->row_preds[h->sh.i_type];
/* Calculate the planned slice size. */
if( rc->b_vbv && rc->frame_size_planned )
{
int size = 0;
for( row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
size += h->fdec->i_row_satd[row];
t->rc->slice_size_planned = predict_size( &rc->pred[h->sh.i_type + (i+1)*5], qscale, size );
}
else
t->rc->slice_size_planned = 0;
}
if( rc->b_vbv && rc->frame_size_planned )
{
threads_normalize_predictors( h );
if( rc->single_frame_vbv )
{
/* Compensate for our max frame error threshold: give more bits (proportionally) to smaller slices. */
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
float max_frame_error = x264_clip3f( 1.0 / (t->i_threadslice_end - t->i_threadslice_start), 0.05, 0.25 );
t->rc->slice_size_planned += 2 * max_frame_error * rc->frame_size_planned;
}
threads_normalize_predictors( h );
}
for( int i = 0; i < h->param.i_threads; i++ )
h->thread[i]->rc->frame_size_estimated = h->thread[i]->rc->slice_size_planned;
}
}
void x264_threads_merge_ratecontrol( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
x264_emms();
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
x264_ratecontrol_t *rct = h->thread[i]->rc;
if( h->param.rc.i_vbv_buffer_size )
{
int size = 0;
for( int row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
size += h->fdec->i_row_satd[row];
int bits = t->stat.frame.i_mv_bits + t->stat.frame.i_tex_bits + t->stat.frame.i_misc_bits;
int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->mb.i_mb_width;
update_predictor( &rc->pred[h->sh.i_type+(i+1)*5], qp2qscale( rct->qpa_rc/mb_count ), size, bits );
}
if( !i )
continue;
rc->qpa_rc += rct->qpa_rc;
rc->qpa_aq += rct->qpa_aq;
}
}
void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
{
if( cur != prev )
{
#define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var))
/* these vars are updated in x264_ratecontrol_start()
* so copy them from the context that most recently started (prev)
* to the context that's about to start (cur). */
COPY(accum_p_qp);
COPY(accum_p_norm);
COPY(last_satd);
COPY(last_rceq);
COPY(last_qscale_for);
COPY(last_non_b_pict_type);
COPY(short_term_cplxsum);
COPY(short_term_cplxcount);
COPY(bframes);
COPY(prev_zone);
COPY(mbtree.qpbuf_pos);
/* these vars can be updated by x264_ratecontrol_init_reconfigurable */
COPY(bitrate);
COPY(buffer_size);
COPY(buffer_rate);
COPY(vbv_max_rate);
COPY(single_frame_vbv);
COPY(cbr_decay);
COPY(rate_factor_constant);
COPY(rate_factor_max_increment);
#undef COPY
}
if( cur != next )
{
#define COPY(var) next->rc->var = cur->rc->var
/* these vars are updated in x264_ratecontrol_end()
* so copy them from the context that most recently ended (cur)
* to the context that's about to end (next) */
COPY(cplxr_sum);
COPY(expected_bits_sum);
COPY(filler_bits_sum);
COPY(wanted_bits_window);
COPY(bframe_bits);
COPY(initial_cpb_removal_delay);
COPY(initial_cpb_removal_delay_offset);
COPY(nrt_first_access_unit);
COPY(previous_cpb_final_arrival_time);
#undef COPY
}
//FIXME row_preds[] (not strictly necessary, but would improve prediction)
/* the rest of the variables are either constant or thread-local */
}
static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over )
{
/* find an interval ending on an overflow or underflow (depending on whether
* we're adding or removing bits), and starting on the earliest frame that
* can influence the buffer fill of that end frame. */
x264_ratecontrol_t *rcc = h->rc;
const double buffer_min = .1 * rcc->buffer_size;
const double buffer_max = .9 * rcc->buffer_size;
double fill = fills[*t0-1];
double parity = over ? 1. : -1.;
int start = -1, end = -1;
for( int i = *t0; i < rcc->num_entries; i++ )
{
fill += (rcc->entry_out[i]->i_cpb_duration * rcc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale -
qscale2bits( rcc->entry_out[i], rcc->entry_out[i]->new_qscale )) * parity;
fill = x264_clip3f(fill, 0, rcc->buffer_size);
fills[i] = fill;
if( fill <= buffer_min || i == 0 )
{
if( end >= 0 )
break;
start = i;
}
else if( fill >= buffer_max && start >= 0 )
end = i;
}
*t0 = start;
*t1 = end;
return start >= 0 && end >= 0;
}
static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max )
{
x264_ratecontrol_t *rcc = h->rc;
double qscale_orig, qscale_new;
int adjusted = 0;
if( t0 > 0 )
t0++;
for( int i = t0; i <= t1; i++ )
{
qscale_orig = rcc->entry_out[i]->new_qscale;
qscale_orig = x264_clip3f( qscale_orig, qscale_min, qscale_max );
qscale_new = qscale_orig * adjustment;
qscale_new = x264_clip3f( qscale_new, qscale_min, qscale_max );
rcc->entry_out[i]->new_qscale = qscale_new;
adjusted = adjusted || (qscale_new != qscale_orig);
}
return adjusted;
}
static double count_expected_bits( x264_t *h )
{
x264_ratecontrol_t *rcc = h->rc;
double expected_bits = 0;
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = rcc->entry_out[i];
rce->expected_bits = expected_bits;
expected_bits += qscale2bits( rce, rce->new_qscale );
}
return expected_bits;
}
static int vbv_pass2( x264_t *h, double all_available_bits )
{
/* for each interval of buffer_full .. underflow, uniformly increase the qp of all
* frames in the interval until either buffer is full at some intermediate frame or the
* last frame in the interval no longer underflows. Recompute intervals and repeat.
* Then do the converse to put bits back into overflow areas until target size is met */
x264_ratecontrol_t *rcc = h->rc;
double *fills;
double expected_bits = 0;
double adjustment;
double prev_bits = 0;
int t0, t1;
double qscale_min = qp2qscale( h->param.rc.i_qp_min );
double qscale_max = qp2qscale( h->param.rc.i_qp_max );
int iterations = 0;
int adj_min, adj_max;
CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) );
fills++;
/* adjust overall stream size */
do
{
iterations++;
prev_bits = expected_bits;
if( expected_bits )
{ /* not first iteration */
adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9);
fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
t0 = 0;
/* fix overflows */
adj_min = 1;
while( adj_min && find_underflow( h, fills, &t0, &t1, 1 ) )
{
adj_min = fix_underflow( h, t0, t1, adjustment, qscale_min, qscale_max );
t0 = t1;
}
}
fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init);
t0 = 0;
/* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */
adj_max = 1;
while( adj_max && find_underflow( h, fills, &t0, &t1, 0 ) )
adj_max = fix_underflow( h, t0, t1, 1.001, qscale_min, qscale_max );
expected_bits = count_expected_bits( h );
} while( (expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) );
if( !adj_max )
x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n");
/* store expected vbv filling values for tracking when encoding */
for( int i = 0; i < rcc->num_entries; i++ )
rcc->entry_out[i]->expected_vbv = rcc->buffer_size - fills[i];
x264_free( fills-1 );
return 0;
fail:
return -1;
}
static int init_pass2( x264_t *h )
{
x264_ratecontrol_t *rcc = h->rc;
uint64_t all_const_bits = 0;
double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
double duration = 0;
for( int i = 0; i < rcc->num_entries; i++ )
duration += rcc->entry[i].i_duration;
duration *= timescale;
uint64_t all_available_bits = h->param.rc.i_bitrate * 1000. * duration;
double rate_factor, step_mult;
double qblur = h->param.rc.f_qblur;
double cplxblur = h->param.rc.f_complexity_blur;
const int filter_size = (int)(qblur*4) | 1;
double expected_bits;
double *qscale, *blurred_qscale;
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
/* find total/average complexity & const_bits */
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rcc->entry[i];
all_const_bits += rce->misc_bits;
}
if( all_available_bits < all_const_bits)
{
x264_log( h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
(int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)) );
return -1;
}
/* Blur complexities, to reduce local fluctuation of QP.
* We don't blur the QPs directly, because then one very simple frame
* could drag down the QP of a nearby complex frame and give it more
* bits than intended. */
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rcc->entry[i];
double weight_sum = 0;
double cplx_sum = 0;
double weight = 1.0;
double gaussian_weight;
/* weighted average of cplx of future frames */
for( int j = 1; j < cplxblur*2 && j < rcc->num_entries-i; j++ )
{
ratecontrol_entry_t *rcj = &rcc->entry[i+j];
double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
if( weight < .0001 )
break;
gaussian_weight = weight * exp( -j*j/200.0 );
weight_sum += gaussian_weight;
cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
}
/* weighted average of cplx of past frames */
weight = 1.0;
for( int j = 0; j <= cplxblur*2 && j <= i; j++ )
{
ratecontrol_entry_t *rcj = &rcc->entry[i-j];
double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
gaussian_weight = weight * exp( -j*j/200.0 );
weight_sum += gaussian_weight;
cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
if( weight < .0001 )
break;
}
rce->blurred_complexity = cplx_sum / weight_sum;
}
CHECKED_MALLOC( qscale, sizeof(double)*rcc->num_entries );
if( filter_size > 1 )
CHECKED_MALLOC( blurred_qscale, sizeof(double)*rcc->num_entries );
else
blurred_qscale = qscale;
/* Search for a factor which, when multiplied by the RCEQ values from
* each frame, adds up to the desired total size.
* There is no exact closed-form solution because of VBV constraints and
* because qscale2bits is not invertible, but we can start with the simple
* approximation of scaling the 1st pass by the ratio of bitrates.
* The search range is probably overkill, but speed doesn't matter here. */
expected_bits = 1;
for( int i = 0; i < rcc->num_entries; i++ )
{
double q = get_qscale(h, &rcc->entry[i], 1.0, i);
expected_bits += qscale2bits(&rcc->entry[i], q);
rcc->last_qscale_for[rcc->entry[i].pict_type] = q;
}
step_mult = all_available_bits / expected_bits;
rate_factor = 0;
for( double step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
{
expected_bits = 0;
rate_factor += step;
rcc->last_non_b_pict_type = -1;
rcc->last_accum_p_norm = 1;
rcc->accum_p_norm = 0;
rcc->last_qscale_for[0] =
rcc->last_qscale_for[1] =
rcc->last_qscale_for[2] = pow( base_cplx, 1 - rcc->qcompress ) / rate_factor;
/* find qscale */
for( int i = 0; i < rcc->num_entries; i++ )
{
qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, -1 );
rcc->last_qscale_for[rcc->entry[i].pict_type] = qscale[i];
}
/* fixed I/B qscale relative to P */
for( int i = rcc->num_entries-1; i >= 0; i-- )
{
qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i], i );
assert(qscale[i] >= 0);
}
/* smooth curve */
if( filter_size > 1 )
{
assert( filter_size%2 == 1 );
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rcc->entry[i];
double q = 0.0, sum = 0.0;
for( int j = 0; j < filter_size; j++ )
{
int idx = i+j-filter_size/2;
double d = idx-i;
double coeff = qblur==0 ? 1.0 : exp( -d*d/(qblur*qblur) );
if( idx < 0 || idx >= rcc->num_entries )
continue;
if( rce->pict_type != rcc->entry[idx].pict_type )
continue;
q += qscale[idx] * coeff;
sum += coeff;
}
blurred_qscale[i] = q/sum;
}
}
/* find expected bits */
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rcc->entry[i];
rce->new_qscale = clip_qscale( h, rce->pict_type, blurred_qscale[i] );
assert(rce->new_qscale >= 0);
expected_bits += qscale2bits( rce, rce->new_qscale );
}
if( expected_bits > all_available_bits )
rate_factor -= step;
}
x264_free( qscale );
if( filter_size > 1 )
x264_free( blurred_qscale );
if( rcc->b_vbv )
if( vbv_pass2( h, all_available_bits ) )
return -1;
expected_bits = count_expected_bits( h );
if( fabs( expected_bits/all_available_bits - 1.0 ) > 0.01 )
{
double avgq = 0;
for( int i = 0; i < rcc->num_entries; i++ )
avgq += rcc->entry[i].new_qscale;
avgq = qscale2qp( avgq / rcc->num_entries );
if( expected_bits > all_available_bits || !rcc->b_vbv )
x264_log( h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n" );
x264_log( h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
(float)h->param.rc.i_bitrate,
expected_bits * rcc->fps / (rcc->num_entries * 1000.),
avgq );
if( expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2 )
{
if( h->param.rc.i_qp_min > 0 )
x264_log( h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min );
else
x264_log( h, X264_LOG_WARNING, "try reducing target bitrate\n" );
}
else if( expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2 )
{
if( h->param.rc.i_qp_max < QP_MAX )
x264_log( h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max );
else
x264_log( h, X264_LOG_WARNING, "try increasing target bitrate\n");
}
else if( !(rcc->b_2pass && rcc->b_vbv) )
x264_log( h, X264_LOG_WARNING, "internal error\n" );
}
return 0;
fail:
return -1;
}